首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Si基异质结构发光的研究现状   总被引:1,自引:0,他引:1  
余金中 《半导体光电》1999,20(5):294-300
综述了Si 基异质结构发光研究的现状。介绍了Si 材料本身的本征发光、激子发光、杂质发光等特性,描述了掺Er- Si 的发光、Si 基量子结构( 量子阱、量子点) 的光发射,重点研究SiGe/Si 异质结构的发光性质。同时还对多孔Si 发光、Si 基发光二极管(LED) 与Si 双极晶体管(BJT) 集成、Si 基上垂直腔面发射激光器(VCSEL) 与微透镜的混合集成作了简要的介绍。  相似文献   

2.
硅基异质结光电探测器用材料的应用研究进展   总被引:2,自引:0,他引:2  
综述当前GeSi/Si、GaAs/GaAlAs、HgCdTe、PtSi和GaN光电探测器用材料的工作原理、特点、研究现状及发展趋势。以新型薄膜外延技术-分子束外延制备的GeSi/Si等人工超晶格材料倍受关注,硅基异质子阱材料成为新一代光电探测材料的发展方向。  相似文献   

3.
应变Si1—xGex层材料和Si/Si1—xGex器件物理参数模型   总被引:4,自引:0,他引:4  
Si/Si1-xGex异质结系统已成功地应用于高速数字、高频微波和光电器件中。对这些器件进行理解和分析时,往往受到应变Si1-xGex材料参数缺乏的制约。本文建立和给出了常温和低温下重要应变Si1-xGex层材料和Si/Si1-xGex器件物理参数模型,对Si/Si1-xGex异质结器件的理解、研究和设计有重要的实际意义。  相似文献   

4.
Si/Ge超晶格外延生长技术的发展和多孔硅发光现象的发现引起了对硅基低维结构材料的关注。本文简单综述了近年来在Si/Ge超晶格电子态和光学性质、调制掺杂Si/GexSi1-x异质结构输运性质以及多孔发光机理等方面的研究进展。  相似文献   

5.
主要介绍以硅为衬底的非本征硅、金属硅化物(Pd2Si,PtSi和IrSi)肖特基势垒红外探测器、GexSi1-x/Si异质结内光电发射红外探测器、硅基红外图象传感器、硅微测辐射热计等红外探测器焦平面阵列的新进展  相似文献   

6.
开创了第二代硅新技术的Si/Si1—xGex异质器件   总被引:1,自引:0,他引:1  
综述了国内外Si/SiGe异质器件的发展状况,指出了Si/SiGe异质器件的特点和优越性,分析了该器件的结构机理和制造技术,阐述了该器件的应用前景和对微电子技术将产生的重大影响,并提出了发展我国Si/SiGe异质器件的建议。  相似文献   

7.
研究一种新型的非晶硅PIN异质结荧光探测器的结构和制备工艺,详细讨论了探测器单元的结构优化设计和暗电流和灵敏度等特性,实验表明,采用α-SiC/α-Si异质结构,提高沉积非晶硅基薄膜的本底真空度,优化制备工艺,可制备高信噪比的非晶硅荧光探测器。  相似文献   

8.
用GSMBE技术在国内首次研究了应变Si1-x Gex/Si异质结材料的生长,并用X射线双晶线双晶衍射技术对样品进行了测试分析,对于Si0.91Ge0.09和Si0.86Ge0.14单层,其半宽度FWHM分别为100〃和202〃,对于Si0.89Ge0.11/Si多量子阱,其卫星峰多达15个以上,三种样品中的GeSi外延层干涉条纹清晰可见,结果表明,用GSMBE技术生长的Si-xGex/Si异质结  相似文献   

9.
本文研究SiGe/Si异质结构MOS器件栅介质制备技术,采用等离子体增强化学汽相淀积(PECVD)方法低温制备电学特性优良的薄栅介质薄膜,并应用于SiGe/Si异质结构器件研制,试制成功SiGe/Si异质结构PMOS和NMOS实验性器件.  相似文献   

10.
砟传钺  刘安生 《光电子.激光》1995,6(6):321-323,333
新型微电子和光电子材料──SiGe/Si异质结构材料的发展夏传钺(国家自然科学基金委员会,信息科学部100083)刘安生,郑有斗(北京有色金属研究总院100088)(南京大学物理系210008)近半个世纪半导体的发展表明,硅材料所制备的器件和以硅大规...  相似文献   

11.
The effect of neutron radiation on the electroluminescence of the Si p-i-n diode containing a multilayered Ge/Si heterostructure with self-assembled nanoislands is studied. In comparison with bulk Si, the diodes containing Ge(Si) nanoislands exhibit a higher radiation hardness of the electroluminescence signal, which is attributed to spatial localization of charge carriers in the Ge/Si nanostructures. The spatial localization of charge carriers impedes their diffusion to radiation defects followed by nonradiative recombination at the defects. The results show the possibilities of using Ge/Si heterostructures with self-assembled nanoislands for the development of optoelectronic devices resistant to radiation.  相似文献   

12.
Silicon-based optoelectronics   总被引:5,自引:0,他引:5  
The decade of the 1990's is an opportune time for scientists and engineers to create cost-effective silicon “superchips” that merge silicon photonics with advanced silicon electronics on a silicon substrate. We can expect significant electrooptical devices from Column IV materials (Si, Ge, C and Sn) for a host of applications. The best devices will use strained-layer epitaxy, doped heterostructures, and bandgap engineering of quantum-confined structures. This paper reviews Si-based photonic components and optoelectronic integration techniques, both hybrid and monolithic  相似文献   

13.
Epitaxial high-crystallization film semiconductor heterostructures has been proved to be an effective method to pre-pare single-crystal films for different functional devices in modern microelectronics,electro-optics,and optoelectronics.With su-perior semiconducting properties,halide perovskite materials are rising as building blocks for heterostructures.Here,the con-formal vapor phase epitaxy of CsPbBr3 on PbS single-crystal films is realized to form the CsPbBr3/PbS heterostructures via a two-step vapor deposition process.The structural characterization reveals that PbS substrates and the epilayer CsPbBr3 have clear relationships:CsPbBr3(110)//PbS(100),CsPbBr3[110]//PbS[001]and CsPbBr3[001]//PbS[010].The absorption and photolu-minescence(PL)characteristics of CsPbBr3/PbS heterostructures show the broadband light absorption and efficient photogener-ated carrier transfer.Photodetectors based on the heterostructures show superior photoresponsivity of 15 A/W,high detectiv-ity of 2.65×1011 Jones,fast response speed of 96 ms and obvious rectification behavior.Our study offers a convenient meth-od for establishing the high-quality CsPbBr3/PbS single-crystal film heterostructures and providing an effective way for their ap-plication in optoelectronic devices.  相似文献   

14.
Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications. One of the major goals of this study is to realize all-Si optoelectronic integrated circuit. This is due to the fact that Si- based optoelectronic technology can be compatible with Si microelectronic technology. If Si - based optoelectronic devices and integrated circuits can be achieved, it will lead to a new irtformational technological revolution. In the article, the current developments of this exciting field are mainly reviewed in the recent years. The involved contents are the realization of various Si- based optoelectronic devices, such as light- emitting diodes, optical waveguides devices, Si photonic bandgap crystals, and Si laser,etc. Finally, the developed tendency of all-Si optoelectronic integrated technology are predicted in the near future.  相似文献   

15.
Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated.  相似文献   

16.
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.  相似文献   

17.
Black phosphorus(BP),an emerging two-dimensional material,is considered a promising candidate for next-genera-tion electronic and optoelectronic devices due to in-plane anisotropy,high mobility,and direct bandgap.However,BP devices face challenges due to their limited stability,photo-response speed,and detection range.To enhance BP with powerful electric-al and optical performance,the BP heterostructures can be created.In this review,the state-of-the-art heterostructures and their electrical and optoelectronic applications based on black phosphorus are discussed.Five parts introduce the perform-ance of BP-based devices,including black phosphorus sandwich structure by hBN with better stability and higher mobility,black phosphorus homojunction by dual-gate structure for optical applications,black phosphorus heterojunction with other 2D materials for faster photo-detection,black phosphorus heterojunction integration with 3D bulk material,and BP via As-doping tunable bandgap enabling photo-detection up to 8.2 μm.Finally,we discuss the challenges and prospects for BP electric-al and optical devices and applications.  相似文献   

18.
碳的加入改进了锗硅材料的性能 ,同时也为半导体器件的研制开发创造了条件 ,增加了硅基器件设计的灵活性。本文介绍了 Si Ge C材料在硅基器件方面的应用 ,包括光探测器、MOS场效应晶体管、HBT等。  相似文献   

19.
In this paper, we will present our recent research on the growth and characterization of some Si-based heterostructures for optical and photonic devices. The heterostructures to be discussed are ZnO nanorods on Si, SiO2, and other substrates such as SiN and sapphire. We will also consider strained Si1−xGex/Si heterostructures for Si optoelectronics. The performance and functionality extension of Si technology for photonic applications due to the development of such heterostructures will be presented. We will focus on the results of structural and optical characterization in relation to device properties. The structural characterization includes x-ray diffraction for assessment of the crystallinity and stress in the films and secondary ion mass spectrometry for chemical analysis. The optical properties and electronic structure were investigated by using photoluminescence. The device application of these thin film structures includes detectors, lasers, and light emitting devices. Some of the Si-based heterostructures to be presented include devices emitting and detecting up to the blue-green and violet wave lengths.  相似文献   

20.
A methodology of the selection of the initial materials, architecture and synthesis of heterostructures based on domestic materials and technologies as applied to specific types of microwave components needs to be developed. As the nomenclature expands, the requirements on energy consumption, overall dimensions and weight, frequency range, noise, values of working temperatures, and other characteristics of microwave components have significantly increased. Specific examples of power amplifiers for various applications (wireless communication systems and location systems) are considered. It is shown that in order to implement such developments, it is necessary to apply modern methods of multilevel computer modeling using various methods of optimization and widely use the tested technical solutions. The final result of this development is the creation of a set of basic physical models of the heterostructures, including those based on the solution of optimized problems by choosing the initial material, substrate material, layer composition, their sequences, layer thicknesses, impurity contents, and their distribution by the layer thickness. All this makes it possible to form an acceptable level of mechanical stresses and high values of the electrophysical characteristics in the heterostructure. The initial data set in the form of a library of basic models of the heterostructures will make it possible to significantly accelerate the development of various microwave components and optoelectronic components in the system of instrument and technological design and improve the characteristics of the devices and economic rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号