首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscarinic receptors expressed on smooth muscle cells are primarily of the M(2) and M(3) subtypes. The M(3) subtype triggers contraction through an interaction with G(q) proteins to stimulate phosphoinositide hydrolysis and mobilize Ca(2+). In contrast, activation of M(2) receptors modulates contraction by preventing relaxation or by potentiating M(3) receptor-mediated contractions, which enhances heterologous desensitization. These effects can be explained by the coupling of M(2) receptors to G(i) proteins that mediate an inhibition of adenylyl cyclase and calcium-activated potassium channels. The pharmacological antagonism of a response mediated through an interaction between M(2) and M(3) receptors has been shown to resemble the profile of the directly acting receptor (M(3)), primarily, and not that of the conditional receptor (M(2)). Evidence for a contractile role of the M(2) receptor has been obtained by inactivating its signaling pathway with pertussis toxin or by measuring contractile effects of muscarinic agonists after M(3) receptors have been covalently inactivated. Under these conditions, M(2) receptors have been shown to mediate an inhibition of the relaxant effects of agents, like isoproterenol, on the contractile effects of nonmuscarinic spasmogens. Muscarinic M(2) and M(3) receptor knockout mice are useful tools for exploring interactions between these receptors in smooth muscle.  相似文献   

2.
VPAC receptors for VIP and PACAP   总被引:6,自引:0,他引:6  
  相似文献   

3.
Heterotrimeric G proteins are key transducers for signal transfer from outside of the cell. In addition to their regulation by the superfamily of G protein-coupled receptors, many if not all of the subtypes of heterotrimeric G proteins are also regulated by additional accessory proteins that influence guanine nucleotide binding and/or hydrolysis or subunit interactions. Activators of G protein signaling (AGS1-3) refer to a functionally defined group of proteins that activate G protein-signaling systems in the absence of a classical G protein-coupled receptor. AGS and related proteins provide unexpected insights into the regulation of the G protein activation/deactivation cycle and the functional roles of G proteins. These proteins likely play important roles in the generation of signaling complexes, the positioning of signaling proteins within the cell, and in biological roles of G proteins unrelated to a cell surface receptor. As such, these proteins and the concepts advanced with their discovery provide unexpected avenues for therapeutics and understanding disease mechanisms.  相似文献   

4.
Yeast assays for G-protein-coupled receptors   总被引:3,自引:0,他引:3  
Yeast assays for G-protein-coupled receptors have many attractions due to their simplicity, low cost, and lack of endogenous receptors. Since the first report of functional coupling of the human beta 2 adrenergic receptor to the yeast pheromone-response pathway in 1990, the technology has developed to a point at which more than 30 heterologous GPCRs are now published to couple. Major breakthroughs have come from an understanding of receptor-G protein interactions, alongside advances in knowledge of the structure of heterotrimeric G proteins. Yeast screens have been used to identify ligands both from compound collections and through the autocrine expression of peptide libraries. Yeast genetics has also been applied to a functional analysis of GPCRs and peptide ligands. In this review we describe the historical development of yeast GPCR assay systems and their current applications.  相似文献   

5.
Olfactory receptor-like proteins (ORLs) are seven transmembrane domain G protein-coupled receptors. We hypothesize that, in contrast with the hypervariable regions that may interact with a variety of odor ligands, the external and internal segments of the ORLs contain conserved regions that may interact with conserved olfactory binding proteins or direct axon guidance, and with G proteins, respectively. To test this hypothesis, a comprehensive analysis using the multiple expectation maximization for motif elicitation discovery tool was performed in all the full-length ORL clones deposited in the public section of the olfactory receptor database. Ten motifs have been identified that are present in all the olfactory receptors, in the same order, and are not present in other G protein-coupled receptors. These motifs are concentrated either in the extracellular-most or the intracellular-most parts of the receptors. The generality of these motifs was verified by their existence in the partial ORLs and 28 newly identified human receptors. The existence and localization of these motifs, suggest that they may be involved in the interactions of the receptors with their upstream and downstream signaling partners. In addition, the motifs present an additional to overall homology criterion for ORL family definition.  相似文献   

6.
The purpose of this study was to compare the efficiency of two different Gq protein-coupled receptors (AT1 receptor for angiotensin II and B2 receptor for bradykinin) to activate phospholipase C (PLC). When the receptors were expressed at a similar level of 0.5 pmol/mg of protein, inositol trisphosphate (IP) accumulation elicited by AT1 receptor was four times higher than that elicited by B2 receptor. Genistein and pertussis toxin did not modify AT1 receptor- or B2 receptor-induced IP accumulation. These results indicate that in COS-7 cells, the two receptors activate PLC beta through G proteins of the Gq family. AT1 or B2 receptors were co-expressed with the alpha subunit of either Gq or G11. Both alpha subunits potentiated to the same extent AT1 receptor-induced IP accumulation. alpha 11 was also as efficient as alpha q to potentiate B2 receptor-induced response. Interestingly, however, the potentiating effect of alpha q and alpha 11 was more important (by 5-fold) on AT1 receptor-mediated response than on B2 receptor-mediated response. These results demonstrate that the extent of activation of PLC beta by different Gq-coupled receptors depends on the level of expression of these receptors and on their coupling efficiency. These are important parameters that determine the relative contribution of specific hormones to different biological processes.  相似文献   

7.
The secretin receptor was the first member of the Class II family of G protein-coupled receptors to be cloned. It is prototypic of this family in its structure, function, and regulation. The extended amino-terminal tail domain includes a series of six conserved Cys residues that contribute three intradomain disulfide bonds. This region of the receptor has been shown by mutagenesis and photo-affinity labeling to be particularly important in secretin binding and stimulation of signaling activity. There is clear evidence for the direct interaction of the natural agonist peptide with this receptor domain. Mutagenesis has also identified important contributions of extracellular loop domains, although their specific roles remain unclear. This receptor is regulated by agonist-stimulated phosphorylation and internalization, with details dependent on the cellular environment.  相似文献   

8.
We compared adenylyl cyclase (AC) activation by the G protein-coupled human serotonin (5-HT) receptors 5-HT4(b) and 5-HT7(a) using an ecdysone-inducible expression system, which allowed for reproducible expression of increasing receptor densities in clonal HEK293 (EcR293) cell lines. Low constitutive expression of receptors (2-70 fmol/mg protein) was observed and could be titrated up to 50-200-fold (approximately 400-7000 fmol/mg protein) by the ecdysone analogue ponasterone A. Although 5-HT-stimulated AC activity increased with receptor density, interclonal variation precluded comparisons of coupling efficiency. Interestingly, the potency of 5-HT to stimulate AC increased with increasing receptor density only in clones expressing 5-HT4(b) receptors. The potency for 5-HT did not change in clones expressing 5-HT7(a) receptors, even though 5-HT-stimulated AC activity approached asymptotic levels. This indicates that potency of 5-HT for stimulation of AC through the 5-HT7(a) receptor is independent of receptor-Gs stoichiometry and is consistent with a model where the 5-HT7(a) receptors are tightly associated with G protein, independent of agonist binding. This supports the existence of a complex between inactive receptor and G protein, as predicted by the cubic ternary complex model. In such a system, spare receptors do not lead to increased potency of an agonist with increased receptor density.  相似文献   

9.
The discovery of receptor-activity-modifying proteins (RAMP) revealed a new principle for the function of G protein-coupled receptors. The initially orphan calcitonin receptor-like receptor (CRLR) was identified as a CGRP receptor when coexpressed with RAMP1. The same receptor is specific for adrenomedullin (ADM) in the presence of RAMP2. Calcitonin receptors (CTR) with 60% homology to the CRLR predominantly recognize calcitonin in the absence of RAMP. An amylin/CGRP receptor was recognized when a calcitonin receptor (CTR) was coexpressed with RAMP1. In the presence of RAMP3, the CTR only interacts with amylin. Noncovalent association of the RAMP with the CRLR or the CTR reveals heterodimeric RAMP/receptor complexes at the cell surface. Thus, two Class II G protein-coupled receptors, the CRLR and CTR, associate with three RAMP to form high affinity receptors for CGRP, ADM, or amylin. Here, the molecular composition and the functional properties of these receptors is reviewed.  相似文献   

10.
Opioid receptors (delta, mu) belong to the large superfamily of G protein coupled receptors that inhibit adenylyl cyclase. We have studied the effects of seven synthetic peptides representing selected cytoplasmic regions of the murine delta-opioid receptor on forskolin-mediated adenylyl cyclase activity in membranes of D2 and Neuro(2A) cells stably expressing the delta- and mu-opioid receptors respectively. The entire third intracellular loop (i3), its amino-terminal portion (i3.1) and the carboxyl-terminal region of the second cytoplasmic loop (i2.2) enhanced dose-dependently the agonist-mediated inhibition of cAMP accumulation. The peptide-mediated effects are blocked by pertussis toxin treatment and are not observed in parental cells that lack these receptors. The inhibitory effects of the peptides on adenylyl cyclase were markedly attenuated when membranes from D2 and Neuro(2A) cells were preincubated with antisera against Gi(2) alpha and G beta subunits of G proteins. Our results provide evidence on domains of the delta- and mu-opioid receptors responsible for adenylyl cyclase inhibition.  相似文献   

11.
Fusion proteins in which the N-terminus of a G protein alpha subunit is attached in frame to the C-terminal tail of a G-protein-coupled receptor have become widely used as experimental systems to explore the quantitative details of ligand stimulation of specific receptor G-protein combinations. In part, this reflects that they function as agonist-activated GTPases that behave with simple Michaelan kinetics. They have also been used to explore the effects of mutation in both receptor and G protein on information transfer, ligand regulation of posttranslational acylation, and the mechanism and potential selectivity of regulators of G-protein signaling.  相似文献   

12.
The fifth member of the G protein beta the subunit family, G beta5, has been shown to bind exclusively to a subfamily of regulators of G protein signaling (RGS) including RGS6, RGS7, RGS9, and RGS11. This interaction occurs through a G protein gamma-like (GGL) domain present in members of this RGS subfamily and is the only reported instance in which a G beta subunit is not bound to a G gamma subunit. The G beta5-RGS interaction has been demonstrated both in vitro and in vivo and has been shown to stabilize the dimer against proteolytic degradation. GTPase activating protein (GAP) assays suggest that G beta5-RGS7 acts specifically on G alphao, however in cell-based assays it also inhibited G alphai- and G alphaq-mediated signaling. The role of the dimer in signaling and the function of G beta5 moiety within the complex are poorly understood. This review summarizes the information about the assembly and function of G beta5-RGS dimers, as well as their posttranslational modifications and localization.  相似文献   

13.
Signaling pathways for muscarinic acetylcholine receptors (mAChRs) include several enzymes and ion channels. Recent studies have revealed the importance of various isoforms of both alpha and betagamma subunits of G proteins in initiation of signaling as well as the role of the small monomeric G protein, Rho, in the activation of phospholipase D. Modulation of adenylyl cyclase activity by mAChRs appears more diverse as the interaction of various receptor subtypes with the many isoforms of the enzyme are studied. Both alpha and beta subunits of G(i/o) may be involved. Some mAChR responses arise through release of nitric oxide from nitrergic nerves, including salivary gland secretion and hippocampal slow wave activity. mAChRs utilize a variety of intracellular pathways to activate various mitogen-activated protein kinases. The kinases are involved in cholinergic regulation of kidney epithelial function, catabolism of amyloid precursor protein, hippocampal long-term potentiation, activation of phospholipase A(2), and gene induction. mAChR activation can also stimulate or inhibit cellular growth and apoptosis, dependent on prior levels of cellular activity. Modulation of ion channels by mAChR agonists appears increasingly complex, based on recent studies. K(+) channels may be activated by M(2) and M(4) mAChR stimulation, although in the rat superior cervical ganglion topographical constraints appear to limit the effect to the M(2) mAChR. Another ganglionic K(+) current, the M current, is inhibited by M(1) mAChR activation, but in murine hippocampus inhibition involves another receptor subtype. R-type Ca(2+) channels are both facilitated and inhibited by M(1) and M(2) mAChRs; facilitation being more pronounced with activation of M(1) mAChRs and inhibition with M(2) mAChRs.  相似文献   

14.
The human 5-hydroxytryptamine5A (h5-ht5A) receptor was expressed in Escherichia coli (h5-ht5A-E. coli) to verify its pharmacological profile in the absence of G proteins. In addition, the ability of the h5-ht5A receptor to interact with mammalian Gi/o and Gs proteins was investigated by a new reconstitution approach. Agonists displayed lower affinities for h5-ht5A-E. coli than for stably transfected h5-ht5A-HEK 293 cells, due to the absence of G protein coupling in E. coli. Lysergic acid diethylamide behaved as a neutral antagonist, showing equal affinities for the G protein-coupled and the uncoupled receptor. To analyze the G protein coupling behavior of the h5-ht5A receptor, h5-ht5A-E. coli membranes or h5-ht5A-Sf9 insect cell membranes were fused by vortexing to membranes from baculovirus-infected Sf9 cells expressing mammalian G proteins. The ability of the h5-ht5A receptor to differentiate between Gi/Go/Gz and Gs proteins was explored by investigation of agonist binding affinities and agonist-induced stimulation of [35S]GTP gamma S binding. The h5-ht5A receptor failed to interact with Gz and Gs proteins and coupled equally well to Gj and Go proteins to form a complex with high affinity for agonists. Under the applied conditions, however, Gi proteins were found to be better activated than Go proteins in the [35S]GTP gamma S binding assay.  相似文献   

15.
RGS proteins attenuate the activities of heterotrimeric G proteins largely by promoting the hydrolysis of the activating nucleotide GTP. This review discusses the interactions of RGS proteins and G proteins and how those interactions are regulated by a variety of factors including auxiliary proteins and other cellular constituents, posttranslational modifications, and intracellular localization patterns. In addition, we discuss progress that has been made toward understanding the roles that RGS proteins play in vivo, and how they may serve to govern responses to G protein-coupled receptors upon acute and prolonged activation by agonists.  相似文献   

16.
The inhibitory GABA(A) receptor is a key element in determining the pattern of nerve cell electrical activity. Thus, modulation of its function is of paramount impact in shaping neuronal functional activity under physiological and pathological conditions. This applies to cerebellar granule neurons as to all the other neurons in the brain. The culture of cerebellar granules from newborn rats is a convenient means by which to approach these cells for electrophysiological studies provided that they maintain, as far as GABA(A) receptors are concerned, the same characteristics as in situ. Thus, the regulation of GABA(A) receptor activity in these neurons has been studied by the patch-clamp technique, both in the whole-cell and outside-out configuration. An obvious first level of control of such receptors' activity is their desensitization under continued agonist application, with biphasic kinetics. The data do not allow one to conclude whether one is dealing with two different populations of receptors or with a single population with two desensitization phases; although the presence of two GABA(A) receptor populations is suggested by a host of observations. The granule cell GABA(A) receptors are modulated by changes in extracellular pH with lower pH resulting in an enhanced receptor activity. They display, under the conditions of whole-cell recording, a run-down phenomenon which is most probably due to a tyrosine phosphatase activity which is in turn under control by a protein serine kinase. Thus, in situ tyrosine phosphorylation is a key element in determining the efficiency of GABA mediated inhibition. Activation of protein kinase A or protein kinase G (PKG) down-regulates GABA(A) receptors' activity. This last event is involved in the depression of those receptors' activity by L-arginine via the production of nitric oxide. In addition, the activity of calmodulin-activated adenylate cyclase I is controlled by GABA(B) receptors. Dendritic GABA(A) receptor activity is partially blocked by previous activation of N-methyl-D-aspartate (NMDA) receptors via calcineurin mediated dephosphorylation/activation of protein tyrosine phosphatase and concomitant production of nitric oxide and PKG activation. The site phosphorylated by PKG is evidently not available for calcineurin-mediated serine dephosphorylation, due to calcineurin-specific membrane localization in respect of the GABA(A) receptor. Overall, a complex network of biochemical signals appear to keep granule cells GABA(A) receptors under a fine balance between up- and down-regulatory mechanisms. The overall data appear also to indicate the presence of two GABA(A) receptor populations: a dendritic one which can be modulated by Ca++ entering via NMDA receptors and a cell body one. The two populations are probably different in terms of desensitization kinetics and benzodiazepine sensitivity.  相似文献   

17.
Recombinant baculoviruses, in which the insect cell-specific polyhedrin promoter has been replaced with a mammalian cell-active expression cassette (BacMam viruses), are efficient gene delivery vehicles for many mammalian cell types. BacMam viruses have been generated for expression of G protein-coupled receptors (GPCRs) and used to establish Ca2+mobilization assays in HEK-293 human embryonic kidney cells and U-2 OS human osteosarcoma cells. U-2 OS cells are highly susceptible to BacMam-based gene delivery and lack many of the endogenous receptors present on HEK-293 and other mammalian cell lines typically used for heterologous expression of GPCRs. U-2 OS cells were found to have a null background for muscarine, ADP, ATP, UTP, UDP, and lysophosphatidic acid (LPA). Consequently, U-2 OS cells transduced with BacMam constructs encoding the muscarinic acetylcholine receptors (M1, M2, M3, M4, and M5subtypes), the P2Y receptors (P2Y1, P2Y2), or the LPA receptors (EDG-2, EDG-7) were used for the establishment of whole-cell Ca2+mobilization assays, assays that cannot readily be established in HEK-293 cells. U-2 OS cells were susceptible to simultaneous expression of multiple genes delivered by BacMam vectors. In U-2 OS cells the functional expression of the Gi-coupled M2and M4receptors was dependent on co-expression of the receptor and a G protein chimera, both of which were delivered to the cells via BacMam viruses. The use of U-2 OS cells and BacMam-based gene delivery has facilitated development of whole-cell-based GPCR functional assays, especially for P2Y, muscarininc acetylcholine, and LPA receptors.  相似文献   

18.
Sohn  Y.-S. Kim  Y.T. 《Electronics letters》2008,44(16):955-956
A BioFET (biological field effect transisor) for detection of C-reactive protein has been characterised using cysteine-tagged protein G capable of site-specific immobilisation of antibody to enhance antigen detection. Drain current of the BioFET with immobilised protein G on the gate surface has been measured in different pH solutions to investigate charge effect of the protein. Antibody-antigen interaction was observed through variation of the drain current of the BioFET. The current differential ratio was linearly related to the concentration of the C-reactive protein in the range 3-20 mug/ml.  相似文献   

19.
Molecular pharmacology of the calcitonin receptor   总被引:1,自引:0,他引:1  
  相似文献   

20.
Predicting protein function from protein interaction networks has been challenging because of the complexity of functional relationships among proteins. Most previous function prediction methods depend on the neighborhood of or the connected paths to known proteins. However, their accuracy has been limited due to the functional inconsistency of interacting proteins. In this paper, we propose a novel approach for function prediction by identifying frequent patterns of functional associations in a protein interaction network. A set of functions that a protein performs is assigned into the corresponding node as a label. A functional association pattern is then represented as a labeled subgraph. Our frequent labeled subgraph mining algorithm efficiently searches the functional association patterns that occur frequently in the network. It iteratively increases the size of frequent patterns by one node at a time by selective joining, and simplifies the network by a priori pruning. Using the yeast protein interaction network, our algorithm found more than 1400 frequent functional association patterns. The function prediction is performed by matching the subgraph, including the unknown protein, with the frequent patterns analogous to it. By leave-one-out cross validation, we show that our approach has better performance than previous link-based methods in terms of prediction accuracy. The frequent functional association patterns generated in this study might become the foundations of advanced analysis for functional behaviors of proteins in a system level.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号