首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
壳聚糖作为药物缓释材料的研究进展   总被引:14,自引:2,他引:12  
壳聚糖是几丁质的脱乙酰基衍生物。它具有生物相溶性好、低毒性、生物可降解性及可被吸收利用等特点,因此是一种良好的药物释放载体。综述了壳聚糖微球、壳聚糖纳米粒子、壳聚糖膜和壳聚糖水性凝胶的制备方法,药物缓释效果及其在临床上的应用。  相似文献   

2.
3.
药物载体可生物降解高分子材料的研究   总被引:4,自引:0,他引:4  
陈燕  唐小斗  戴亚飞 《材料导报》2001,15(9):59-61,44
总结了评述了用于药物缓释体系中作为药物载体的可生物降解高分子材料的合成和应用,并对其研究发展前景进行了分析和展望。  相似文献   

4.
热敏性互穿网络聚合物   总被引:5,自引:0,他引:5  
简要叙述了热敏性互穿网络聚合物的研究概况及合成方法,详细介绍了负热敏性1PN材料的溶胀平衡和解溶胀动力学行为以及实际应用等问题。  相似文献   

5.
高分子材料纤维素醚类衍生物在缓释制剂辅料中的应用   总被引:8,自引:0,他引:8  
陈慧云  王建华  徐世荣  王琦 《材料导报》2005,19(7):48-50,60
药用辅料是药物制剂的基础材料和重要组成部分,缓释制剂中起缓释作用的辅料多为高分子化合物.综述了高分子材料纤维素醚类衍生物中羧甲基纤维素钠、甲基纤维素、乙基纤维素、羟丙基甲基纤维素和羟丙基纤维素等作为药用辅料在缓释制剂中的应用,并展望了其应用前景.  相似文献   

6.
高分子包膜材料对抗凝冰剂缓释性能的影响   总被引:1,自引:0,他引:1  
抗凝冰剂是一种代替沥青混合料中不同粒径的矿料、使沥青路面具有主动除冰雪功能的一种外加剂。国内同类产品缓释性能差,普遍缺乏长效性。为增强抗凝冰剂的缓释效果,研究借鉴农药、化肥包膜技术,分别用聚苯乙烯、环氧树脂、水溶性酚醛树脂对大粒盐进行包膜,并对包膜方法、稀释比例、大粒盐粒径及固化温度等条件进行探究,得出如下结论,采用环氧树脂包膜,4.75~9.5 mm粒径大粒盐,环氧树脂与环己酮稀释比例为4∶1,加入环氧树脂质量30%的固化剂且在100℃下固化,溶液不掺加改性蓄盐载体,粒子表面裹一层改性蓄盐载体,以此条件下制备的抗凝冰剂缓释效果较好。  相似文献   

7.
生物降解高分子材料--聚酸酐的研究进展   总被引:6,自引:0,他引:6  
聚酸酐由于其具有良好的表面溶蚀性能,作为药物控释体材料得到广泛的应用。文中综述了生物降解医用高分子材料——聚酸酐的分类、制备方法、研究进展及应用等.并提出了今后的发展方向。  相似文献   

8.
以八乙烯基低聚倍半硅氧烷(OVPS)为交联剂,通过溶液共聚制备了聚N-异丙基丙烯酰胺有机/无机杂化水凝胶(P(OVPS-co-NIPAM)),研究了其溶胀、消溶胀和再溶胀及药物缓释行为。结果表明,所有P(OVPS-co-NIPAM)杂化水凝胶的平衡溶胀率SR均随温度升高而降低。20℃,5-P(OVPS-co-NIPAM)杂化水凝胶在去离子水中的SR与常规水凝胶P(MBA-co-NIPAM)相同,但在生理盐水中的SR,前者明显大于后者。随着OVPS含量的增加,杂化水凝胶的SR、再溶胀和消溶胀速率均逐渐下降。5-P(OVPS-co-NIPAM)杂化水凝胶的载药率和累积释药率均高于常规水凝胶P(MBA-co-NIPAM)。此外,P(OVPS-co-NIPAM)杂化水凝胶的药物释放速率均高于常规水凝胶,而且20℃时随OVPS含量增加,释药加快。  相似文献   

9.
直接以廉价的外消旋乳酸(D,L-LA)和赖氨酸(Lys)为原料,采用熔融聚合法合成药物缓释材料聚(乳酸-赖氨酸)共聚物[P(LA-co-Lys)]。用特性黏度[η]、FTIR1、H-NMR、GPC、DSC、XRD等手段对P(LA-co-Lys)进行了系统表征,探讨了催化剂种类和用量、熔融聚合反应时间、反应温度以及不同投料比对聚合物合成的影响。当单体乳酸和赖氨酸投料摩尔比为90/10,在160℃、70Pa、催化剂SnCl2的用量0.5%的条件下熔融聚合8h时,聚合物重均相对分子质量(Mw)可达6200。随着赖氨酸投料量的增加,共聚物Mw和玻璃化转变温度(Tg)逐渐降低,且共聚物均为无定形态,能满足药物缓释材料的要求。  相似文献   

10.
常用的眼用药物制剂为滴眼剂或者眼膏剂,具有使用不方便、药物利用效率低、易引起副作用、需频繁施用、影响视力等缺点.采用角膜接触镜缓释的眼用药物制剂可克服这些缺点,因而受到研究人员的重视.综述了基于角膜接触镜、适于缓释眼用药物的poly-HEMA(聚甲基丙烯酸羟乙酯)水凝胶、硅氧烷水凝胶、分子印迹聚合物水凝胶以及含离子配体水凝胶的研究进展,并展望了适于角膜接触镜缓释的眼用制剂的水凝胶材料的发展前景.  相似文献   

11.
综述了SiO2基药物可控释放材料,分析了简单、掺杂、杂化SiO2药物可控释放凝胶,以及介孔SiO2药物可控释放材料的特点,讨论了水和前驱物的比例、催化剂、掺杂剂、凝胶前驱物的种类、凝胶比表面积与孔径、凝胶尺寸及药物负载量、以及药物与凝胶基质及掺杂剂之间的相互作用对可控释放的影响.对于SiO2基药物可控释放材料来说,基质溶胀和基质溶解对药物可控释放的影响不大,药物扩散是释放的主要机制.基于介孔SiO2的pH敏感和光敏开关效应,为SiO2基药物可控释放材料提供了新思路.  相似文献   

12.
综述了用聚乳酸类可生物降解型高分子材料制备缓控释药物载体的研究现状.分别介绍了该类材料在微粒给药载体、凝胶制剂、缓释支架和埋植制剂的应用及其制备方法.阐述了目前聚乳酸类生物降解材料在缓控释药物制剂中的主要问题,展望了其发展前景.  相似文献   

13.
采用表面印迹技术,选取γ-氨丙基三甲氧基硅烷(APTS)和甲基丙烯酰氯修饰的硅胶为载体,以阿司匹林(Asp)为模板分子,丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EDGMA)为交联剂,在乙腈溶液中合成了阿司匹林表面分子印迹聚合物微球(MIPs)和非印迹聚合物微球(NIPs)。通过紫外、红外光谱、扫描电镜、透射电镜、热重分析以及吸附实验进行了表征并进行了药物扩散实验。结果表明,MIPs平衡吸附量可达164.40μmol/g,对苯甲酸(BA)和水杨酸(SA)的分离因子达到3.15和3.32,有很好的热稳定性和选择性吸附能力;MIPs持续释药时间是NIPs的2.6倍,有很好的缓释效果和应用价值。  相似文献   

14.
以戊二醛为交联剂制备了壳聚糖/果胶(CS-PT)水凝胶和壳聚糖/辛基果胶水凝胶。研究了制备条件对两种水凝胶溶胀性能的影响。实验表明,交联剂含量、pH、离子强度对CS-PT和壳聚糖/辛基果胶水凝胶溶胀度的影响较大,且在酸性条件下的水凝胶的溶胀度远大于碱性条件下的溶胀度,包埋在水凝胶中的牛血清蛋白在pH=1.0条件下载药的水凝胶释药率大于pH=7.4和pH=9.18条件下的释药率。  相似文献   

15.
通过连续原子转移自由基聚合(ATRP)合成了聚丙烯酸叔丁酯-b-聚(甲基丙烯酸二甲胺基乙酯)(PtBA-b-PDMAEMA)和聚丙烯酸叔丁酯-b-聚异丙基丙烯酰胺(PtBA-b-PNIPAM),并采用选择性溶剂自组装方法制备了具有复合壳层的核壳结构胶束(Dh=209 nm),采用动态光散射及透射电镜研究了胶束的结构和分布,进一步通过紫外光谱对胶束的药物释放性能进行了表征。研究表明,这种复合壳层的聚合物胶束会在壳层形成可控的药物通道,从而实现药物释放的精确控制。  相似文献   

16.
聚合物水凝胶是由亲水性聚合物链通过物理作用或化学键作用形成的三维网络结构,在受到环境变化刺激时会产生响应性,因而作为药物控释载体广泛应用于医药领域。文中介绍了可控释药系统的类型及其主要影响因素,综述了可控释药数学模型的发展与应用,比较性分析了经验/半经验模型与机理模型,并展望了未来的发展方向。  相似文献   

17.
陈智捷  陈燕芳  郑军  徐小燕 《材料导报》2018,32(Z1):169-175
水凝胶作为性能良好的载体,在药物的控释、组织工程等领域有着广泛的应用。壳聚糖是一类天然的带正电荷的碱性多糖,由其形成的水凝胶具有较好的生物相容性、生物降解性、抗菌和低细胞毒性,因此,壳聚糖水凝胶有着良好的生物应用前景。本文综述了壳聚糖水凝胶的制备方法(包括物理交联法和化学交联法),在物理交联法部分着重介绍了离子化合物及聚电解质分子与壳聚糖通过离子交联形成水凝胶,以及利用分子链间的疏水作用形成壳聚糖水凝胶的方法;而在化学交联法部分介绍了合成壳聚糖水凝胶的化学手段,包括交联剂、光照辐射和酶的使用。继而概述了壳聚糖水凝胶在药物缓释应用方面的研究进展,包括温度、pH值和电场响应的药物控释体系。最后展望了壳聚糖水凝胶未来的发展前景。  相似文献   

18.
基于微纳米加工技术,设计一种可降解的植入式药物控释微载体,介绍利用紫外光刻(UV—LIGA)技术制备该类微载体的工艺。用聚羟基丙酸乙酸(PLGA)制作该微载体,分别对填充扑热息痛和扑尔敏两种药物的该类控释系统进行了实验研究,对比分析了在结构表面扎微孔和药物的溶解度对释药速率的影响情况,实验表明该类型微载体适用于植入式长期控释给药,而且累积给药量线性度较好。  相似文献   

19.
传统药用高分子材料如纤维素醚类衍生物、丙烯酸树脂类及聚乙烯吡咯烷酮类等具有良好的膨胀性、溶蚀性和渗透性等。当其受到外界信号刺激时,高分子材料的结构和性质随之发生变化,从而控制药物的脉冲释放。概述了传统药用高分子材料在脉冲式药系统中的应用研究,探讨了新型高分子材料的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号