首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processing and Characterization of BaTi4O9   总被引:1,自引:0,他引:1  
BaTi4O9 powder prepared by calcining BaCO3 and TiO2 powders was sintered to over 97% of theoretical density. Less than 5% Ba2Ti9O20 occurred as a second phase in "pure" BaTi4O9, and Al2O3 impurities from processing formed isolated hollandite (∼BaAl2Ti6O16) grains, which were identified by fringes in bright-field TEM images. For pure BaTi4O9 at 1 MHz, a dielectric loss (tan δ) of 5 × 10−4 and dielectric constant of 39 were recorded. Hollandite impurities were found to increase tan δ by 2 orders of magnitude, whereas firing in oxygen decreased tan δ by an order of magnitude.  相似文献   

2.
BaTi4O9 and Ba2Ti9O20 precursors were prepared via a sol–gel method, using ethylenediaminetetraacetic acid as a chelating agent. The sol–gel precursors were heated at 700°–1200°C in air, and X-ray diffractometry (XRD) was used to determine the phase transformations as a function of temperature. Single-phase BaTi4O9 could not be obtained, even after heating the precursors at 1200°C for 2 h, whereas single-phase Ba2Ti9O20 (as determined via XRD) was obtained at 1200°C for 2 h. Details of the synthesis and characterization of the resultant products have been given.  相似文献   

3.
The phase development sequence based on a composition equivalent to Ba2Ti9O20 during heating is found to be in the following order: BaTi5O11 > BaTi4O9 > Ba2Ti9O20. The lowest rate of formation of Ba2Ti9O20 is caused by its high surface energy and interface energy, which result in a low nucleation rate. The existence of BaTi5O11 in calcined powder helps to form Ba2Ti9O20 in sintered compacts. The effect of BaTi5O11 on Ba2Ti9O20 formation can be explained by their similar oxygen packing and by reduced volume change during transformation. The amount of BaTi5O11 formed during heating depends greatly on the compositional homogeneity of powders. The addition of SnO2 aids the formation of Ba2Ti9O20 by reduced strain energy at transformation and reduced surface energy.  相似文献   

4.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

5.
Phase relations in the system BaO-TiO2 from 67 to 100 mol% TiO2 were investigated at 1200° to 1450°C in O2. Data were obtained by microstructural, X-ray, and thermal analyses. The existence of the stable compounds Ba6Ti17O40, Ba4Ti13O30, BaTi4O9, and Ba2Ti9O20 was confirmed. The compound BaTi2O5 is unstable and either forms as a reaction intermediate below the solidus or crystallizes from the melt. The compounds Ba6Ti17O40 and Ba4Ti13O30 decompose in peritectic reactions, and BaTiO3 and Ba6Ti17O40 react to form a eutectic. Special conditions are required for the formation of Ba2Ti9O20, which decomposes in a peritectoid reaction at 1420°C. The new phase diagram is presented.  相似文献   

6.
Microwave Characteristics of BaO-TiO2 Ceramics Prepared via a Citrate Route   总被引:3,自引:0,他引:3  
Microwave dielectrics of the TiO2-rich BaO-TiO2 system (BaTi4O9 and Ba2Ti9O20) were prepared by the citrate route. Pure and well-crystallized BaTi4O9 and Ba2Ti9O20 particles of nanometer size (30–50 nm) could be obtained by thermal decomposition of citrate gel precursors. After sintering at 1200°–1350°C (for 2–10 h), dense compounds with >90% of theoretical density could be obtained. Dielectric properties of disk-shaped sintered specimens, in the microwave frequency region, were measured in the TE01δ mode. They were found to have excellent microwave characteristics: for BaTi4O9, εr= 36, Q = 4900 at 10.3 GHz, and τf= 16 ppm/°C; and for Ba2Ti9O20, εr= 37, Q = 5300 at 10.7 GHz, and τf=−6.0 ppm/°C.  相似文献   

7.
Barium titanate precursors with Ba/Ti ratio 2:9 and 1:5 were prepared by first hydrolyzing titanium alkoxide and then mixing the resulting titania sol with a barium alkoxide-methanol solution. After drying, the xerogels of the precursors of barium titanates were sintered at temperatures from 700°C (4 h) to 1200°C (110 h or longer). Characterization of the product was performed using X-ray diffraction and laser Raman spectroscopy. At 700°C, BaTi5O11 was formed from the 1:5 precursor and a two-phase mixture of BaTi2O5 and BaTi5O11 was formed from the 2:9 precursor. After prolonged heating at 1200°C, the latter mixture converted to a single-phase material, Ba2Ti9O20.  相似文献   

8.
The effects of solid-solution additives, their concentration, and the thermal processing schedule on the microstructure evolution and microwave properties of Ba2Ti9O20 were studied. The solubility of tin in Ba2Ti9O20 was higher than that of zirconium. Both elements facilitated the formation of phase-pure Ba2Ti9O20 resonators. Ba2Ti9O20 formed most easily with low dopant concentrations (0.82 mol%) (most impressively for ZrO2 substitutions). Extended heat treatment (16 h versus 6 h at a temperature of 1390°C) resulted in volatilization of the grain-boundary liquid phase, which leads to more-porous resonators that have correspondingly lower permittivities. Increasing the dopant concentration resulted in minor increases in the quality factor; doping with zirconium led to slightly higher values (a maximum of 13900 at a frequency of 3 GHz). Increasing the measurement temperature degraded the quality factor (most precipitously for BaTi4O9). The temperature coefficient decreased as the ZrO2 substitution increased but was largely unaffected by the SnO2 concentration. Excess TiO2 in a batch with no other dopants demonstrated degraded microwave properties.  相似文献   

9.
An investigation of the ternary systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2 led to the discovery of two new compounds belonging to the system BaO-TiO2. These compounds, Ba2Ti9-O20 and Ba2Ti9O20, are stabilized by minute additions of SnO2 or ZrO2. The known compound BaTi2O5 can be obtained only from the molten phase and decomposes below 1300°C. into Ba2Ti5O12 and BaTiO2. In these systems no ternary compounds are found. The ternary phase diagrams can be divided into regions with high and low dielectric losses, which are in accordance with the phase relations. Tables with crystallographic data of the new compounds are included.  相似文献   

10.
The heterogeneous phase distribution found in Ba2Ti9O20 ceramic resonators results from a temperature-dependent phase boundary and slow reaction kinetics. When sintered at 1350°C or higher in oxygen the Ba2Ti9O20 phase becomes slightly reduced and barium-rich. Thus a stoichiometric composition forms rutile and "Ba2Ti9O20'phase. On slow cooling the excess barium diffuses to the oxygen-rich surface where it reacts to form an envelope of rutile-free material surrounding a core containing a small amount of rutile.  相似文献   

11.
The dielectric properties of ceramics in the TiO2-rich region of the BaO-TiO2 system were investigated. In the composition range between BaTi4O9 and TiO2, another compound, Ba2Ti9O20, can be obtained when calcining and sintering conditions are controlled carefully. When dense and single-phase, this ceramic has excellent dielectric and physical properties. At 4 GHz, the dielectric K = 39.8, Q = 8000, and τ K (temperature coefficient of dielectric constant) =−24 ± 2 ppm/°C.  相似文献   

12.
The dielectric properties of dense ceramics of the "twinned" 8H-hexagonal perovskite Ba8Nb4Ti3O24 are reported. Single-phase powders were obtained from the mixed-oxide route at 1325°C and ceramics (>92% of the theoretical X-ray density) by sintering in air or flowing O2 at 1400°–1450°C. The ceramics are dc insulators with a band gap >3.4 eV that resonate at microwave frequencies with relative permittivity, ɛr∼44–48, quality factor, Q × f r∼21 000–23 500 GHz (at f r∼5.5 GHz) and temperature coefficient of resonant frequency, TC f,∼+115 ppm/K.  相似文献   

13.
High dielectric constant and low loss ceramics with composition Ba2La3Ti3TaO15 have been prepared by a conventional solid-state ceramic route. This compound adopts A5B4O15 cation-deficient hexagonal perovskite structure. The dielectric properties of dense ceramics sintered in air at 1520°C have been characterized at microwave frequencies. It shows a relative dielectric constant of ∼45, quality factor Q u× f of ∼26 828 GHz and temperature variation of resonant frequency of −0.97 ppm/°C.  相似文献   

14.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

15.
The effects of B2O3 addition on the sintering behavior and the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 (BST) ceramics were investigated. The dielectric and ferroelectric properties of a BST sample with 0.5 wt% B2O3 sintered at <1150°C were as good as those of undoped BST sintered at 1350°C, and the dielectric loss was better. When >1.0 wt% B2O3 was added to BST, the overdoped B2O3 did not form a liquid phase or volatilize; it remained in the samples and formed a secondary phase that lowered the sintering behavior and the dielectric and ferroelectric properties of the BST.  相似文献   

16.
The effect of B2O3–SiO2 liquid-phase additives on the sintering, microstructure, and microwave dielectric properties of LiNb0.63Ti0.4625O3 ceramics was investigated. It was found that the sintering temperature could be lowered easily, and the densification and dielectric properties of LiNb0.63Ti0.4625O3 ceramics could be greatly improved by adding a small amount of B2O3–SiO2 solution additives. No secondary phase was observed for the ceramics with B2O3–SiO2 additives. With the addition of 0.10 wt% B2O3–SiO2, the ceramics sintered at 900°C showed favorable microwave dielectric properties with ɛr=71.7, Q × f =4950 GHz, and τf=−2.1 ppm/°C. The energy dispersive spectra analysis showed an excellent co-firing interfacial behavior between the LiNb0.63Ti0.4625O3 ceramic and the Ag electrode. It indicated that LiNb0.63Ti0.4625O3 ceramics with B2O3–SiO2 solution additives have a number of potential applications on passive integrated devices based on the low-temperature co-fired ceramics technology.  相似文献   

17.
The dielectric properties of dense ceramics of the n =0 member of a newly identified homologous series Ba3+ n LaNb3Ti n O12+3 n , where n =0, 1, and 2, are reported. Single-phase powders can be obtained from the mixed-oxide route at 1350°C and dense ceramics (>97% of the theoretical X-ray density) with uniform microstructures (3–5 μm) can be obtained by sintering in air at 1500°C. The ceramics are excellent dc insulators with a band gap >2.6 eV that resonate at microwave frequencies with a relative permittivity, ɛr∼44, a quality factor, Q × f r, of ∼9000 at f r∼5.5 GHz and a temperature coefficient of resonant frequency, TCf,∼−100 ppm/K.  相似文献   

18.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

19.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

20.
Modification of the microwave dielectric properties in Ba6−3 x Nd8+2 x Ti18O54 ( x = 0.5) solid solutions by Bi/Sm cosubstitution for Nd was investigated. A large increase in the dielectric constant and near-zero temperature coefficient combined with high Qf values were obtained in modified Ba6−3 x Nd8+2 x Ti18O54 solid solutions where an enlarged solid solution limit of Bi in Ba6−3 x Nd8+2 x Ti18O54 was observed. Excellent microwave dielectric characteristics (ɛ= 105, Qf = 4110 GHz, and very low τf) were achieved in the composition Ba6−3 x (Nd0.7Bi0.18Sm0.12)8+2 x Ti18O54.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号