首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
The inhibition effect of two pyrimidine derivatives on the corrosion of austenitic stainless steel in 1 M HCl has been studied by Tafel plot, linear polarization, and electrochemical impedance spectroscopy (EIS) at 298 K. Results showed that compounds inhibited steel corrosion in a 1 M HCl solution and inhibition efficiencies increased with the concentration of inhibitor. Polarization curves indicated that all studied pyrimidine derivatives act as mixed type (cathodic/anodic) inhibitors. The adsorption of the inhibitors on the stainless steel surface was found to obey the Langmuir and Dubinin–Radushkevich adsorption isotherm models. Negative values of ΔGads in the acidic media ensured the spontaneity of the adsorption process.  相似文献   

2.
Adsorption of four derivatives of piperidinylmethylindoline-2-one on mild steel surface in 1 M HCl solution and its corrosion inhibition properties has been studied by a series of techniques, such as polarization, electrochemical impedance spectroscopy (EIS), weight loss and quantum chemical calculation methods. The values of activation energy (Ea) for mild steel corrosion and various thermodynamic parameters were calculated and discussed. Potentiodynamic polarization measurements showed that all inhibitors are mixed type. The degree of surface coverage was determined by using weight loss measurements and it was found that adsorption process of studied inhibitors on mild steel surface obeys Langmuir adsorption isotherm.  相似文献   

3.
The effect of thiourea on electrochemical corrosion behavior of mild steel was investigated in 0.5M HCl solution at room temperature by electrochemical impedance spectroscopy (AC Impedance) and Tafel polarization (DC Polarization) methods. The results show that thiourea act as mixed type inhibitor. The inhibition efficiency obtained from AC Impedance and DC polarization methods are in good agreement. The Nyquist plots show that the corrosion behavior of mild steel in 0.5M HCl solution in the absence and in the presence of thiourea, consist a simple capacitive loop. Changes in impedance parameters (Rct and Cdl) are indicative of adsorption of thiourea on the metal surface, leading to the formation of protective film. Thiourea is found to adsorb on mild steel surface steel in 0.5M HCl solution, according to the Langmuir adsorption isotherm.  相似文献   

4.
The adsorption and inhibition effect of 1,1′-thiocarbonyldiimidazole (TCDI) on the corrosion of mild steel (MS) in 0.5 M HCl solution was studied in both short and long immersion time (120 h) with the help of electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. For long-time tests, the hydrogen gas evolution (VH2-t) and the change of open circuit potential with immersion time (E ocp-t) were also utilized in addition to the former two techniques. The surface morphology of MS after its exposure to 0.5 M HCl solution with and without 1.0 × 10−2 M TCDI was examined by scanning electron microscopy (SEM). It was demonstrated that the inhibition efficiency of studied inhibitor is concentration depended and increased with TCDI concentration. The higher value of inhibition efficiency was obtained after longer immersion time merely on the basis of strong increase of corrosion rate of mild steel in the blank solution. The high inhibition efficiency was discussed in terms of adsorption of inhibitor molecules and protective film formation on the mild steel surface which was substantiated by SEM micrographs. The adsorption of TCDI on MS was found to obey Langmuir adsorption isotherm.  相似文献   

5.
A heterocyclic Schiff base furoin thiosemicarbazone was tested for its corrosion inhibition towards mild steel in 1 M HCl solution using weight loss, Tafel polarization and electrochemical impedance spectroscopy techniques. Furoin thiosemicarbazone revealed good corrosion inhibition efficiency even at low concentrations towards mild steel in HCl medium. Comparison of corrosion inhibition efficiency of Schiff base and its parent amine and effect of temperature on inhibition efficiency were also investigated. The adsorption of furoin thiosemicarbazone on mild steel surface obeys Langmuir isotherm.  相似文献   

6.
Surfactants such as non-ionic polyethylene glycol tert-octylphenyl ether (Triton X-114) have been studied as efficient corrosion inhibitors in acid medium. In this study inhibition performance of Triton X-114 has been evaluated as corrosion inhibitor for mild steel in 0.5 mol l−1 H2SO4. The electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and linear polarization (LPR) techniques has been applied to determine the electrochemical behaviour of Triton X-114. The maximum efficiency of Triton X-114 was found as 96% at the concentration 5.0 × 10−5 mol l−1. The adsorption isotherm of inhibitor on the mild steel surface was found to be in a good agreement with the Langmuir and the standard free energy value (ΔG ads°) was calculated as −50.1 kJ mol−1, which shows that adsorption of Triton X-114 on the mild steel surface improves the inhibition characteristics in 0.5 M H2SO4.  相似文献   

7.
The inhibition effect of alkaloids extract from Oxandra asbeckii plant (OAPE) on the corrosion of C38 steel in 1 M hydrochloric acid solution has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency increases on increasing plant extracts concentration. Cathodic and anodic polarization curves show that OAPE is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of C38 steel in 1 M HCl with and without addition of plant extract was studied in the temperature range 25–55 °C. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results are given. The adsorption of this plant extract on the C38 steel surface obeys the Langmuir adsorption isotherm. Surface analysis (Raman) was also carried out to establish the corrosion inhibitive property of this plant extract in HCl solution.  相似文献   

8.
The inhibiting behavior of 6‐aminohexanoic acid (C6H13NO2) on mild steel corrosion in 1 M HCl as corroding solution at 25 °C was evaluated by weight loss, polarization, and electrochemical impedance spectroscopy (EIS) methods. The weight loss, polarization, and EIS measurements were relatively in good agreement together. Results obtained by the three methods showed that the inhibition efficiency (%IE) increases with increasing the concentration of 6‐aminohexanoic acid up to 6.86 × 10?05 M (about %IE = 80). It was also found that the adsorptive behavior of the investigated inhibitor on the steel surface followed Langmuir‐type isotherm, the 6‐aminohexanoic acid acted as a mixed type inhibitor and its inhibition mechanism obeys from the chemisorption interaction between 6‐aminohexanoic acid and the mild steel.  相似文献   

9.
The inhibition performance of three Schiff bases containing disulfide bond as corrosion inhibitors for mild steel in 2.0 M HCl has been investigated by weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization study showed that all the inhibitors are mixed type. The adsorption of inhibitors on mild steel surface was found to follow Langmuir adsorption isotherm and the adsorption isotherm parameters (Kads, ΔGads) were determined. Quantum chemical calculations were further applied to reveal the adsorption structure and explain the experimental results. Some samples of mild steel were examined by SEM.  相似文献   

10.
The corrosion performance of a mild steel (MS) exposed to a 0.5 M HCl solution with various concentrations of Rhodanine (Rh) was studied by means of anodic and cathodic voltammetric curves, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. Rh makes the corrosion of MS in HCl solution decelerate with the exposure time so as to reach a protective value of more than 99% in 168 h. The adsorption of Rh molecules on the MS obeys Langmiur adsorption isotherm. Thermodynamic parameters, adsorption equilibrium constant (K ads), and standard free energy of adsorption (ΔG ads o ) were calculated and discussed. The high inhibition efficiency was discussed in terms of blockading the metal surface by the Rh molecules strongly adsorbing witch their active centers and thus forming a sufficiently effective protective film.   相似文献   

11.
The inhibitive action of the aqueous extracts of fruit peels against corrosion of carbon steel in a 1 M HCl solution was investigated using electrochemical impedance spectroscopy, potentiodynamic polarization curves, weight loss measurements and surface analysis. We analyzed aqueous extracts of mango, orange, passion fruit and cashew peels in different concentrations and found that the extracts act as good corrosion inhibitors for the tested system. The inhibition efficiency increases with increasing extract concentration and decreases with temperature. The adsorption of components of the fruit peel extracts on the surface of the carbon steel follows the Langmuir adsorption isotherm.  相似文献   

12.
Inhibitory effect of three Schiff bases 2-{[(2-sulfanylphenyl)imino]methyl}]phenol (A), 2-{[(2)-1-(4-methylphenyl)methylidene]amino}-1-benznethiol (B), and 2-[(2-sulfanylphen-yl)ethanimidoyl)]phenol (C) on corrosion of mild steel in 15% HCl solution has been studied using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. The results of the investigation show that the compounds A and B with mean efficiency of 99% at 200 mg/L additive concentration have fairly good inhibiting properties for mild steel corrosion in hydrochloric acid, and they are as mixed inhibitor. All measurements show that inhibition efficiencies increase with increase in inhibitor concentration. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on mild steel surface. Adsorption of these inhibitors follows the Langmuir adsorption isotherm. Thermodynamic adsorption parameters (Kads, ΔGads) of studied Schiff bases were calculated using the Langmuir adsorption isotherm. Activation parameters of the corrosion process such as activation energies, Ea, activation enthalpies, ΔH, and activation entropies, ΔS, were calculated by the obtained corrosion currents at different temperatures. Obvious correlation was found between the corrosion inhibition efficiency and the calculated parameters. The obtained theoretical results have been adapted with the experimental data.  相似文献   

13.
In this work, the dodecyl cysteine hydrochloride surfactant was synthesized. The surface properties of this surfactant were studied using surface tension technique. The nanostructure of this surfactant with the prepared gold nanoparticles was investigated using TEM technique. The synthesized surfactant and its nanostructure with the prepared gold nanoparticles were examined as non-toxic corrosion inhibitors for carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that the percentage inhibition efficiency (η%) for each inhibitor increases with increasing concentration until critical micelle concentration (CMC) is reached. The maximum inhibition efficiency approached 76.6% in the presence of 175 ppm of dodecyl cysteine and 90.8% in the presence of the same concentration of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles. Polarization data indicate that the selected additives act as mixed type inhibitors. The slopes of the cathodic and anodic Tafel lines (βc and βa) are approximately constant and independent of the inhibitor concentration. Analysis of the impedance spectra indicates that the charge transfer process mainly controls the corrosion process of carbon steel in 2 M HCl solution both in the absence and presence of the inhibitors. Adsorption of these inhibitors on carbon steel surface is found to obey the Langmuir adsorption isotherm. From the adsorption isotherms the values of adsorption equilibrium constants (Kads) were calculated. The relatively high value of (Kads) in case of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles reveals a strong interaction between the inhibitor molecules and the metal surface.  相似文献   

14.
The corrosion inhibition of mild steel in 1 M HCl by 4-hydroxybenzaldehyde-1,3propandiamine (4-HBP) has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. The experimental results suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. Polarization curves reveal that this organic compound is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of mild steel in 1 M HCl with the addition of the Schiff base was studied in the temperature range from 25 to 65 °C. The experimentally obtained adsorption isotherms follow the Langmuir equation. Activation parameters and thermodynamic adsorption parameters of the corrosion process such as E a, ΔH, ΔS, K ads, and ΔG ads were calculated by the obtained corrosion currents at different temperatures and using the adsorption isotherm. The morphology of mild steel surface after its exposure to 1 M HCl solution in the absence and in the presence of 4-HBP was examined by AFM images.  相似文献   

15.
The corrosion inhibition behavior of nitrogen-containing amino acid l-Histidine (LHS) on mild steel in 0.1 M H2SO4 solution in the temperature range of 30-60 °C was studied by weight loss measurements, and potentiodynamic polarization measurements. The effect of the addition of very small concentration of surfactants, sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB), respectively on the corrosion inhibition behavior of LHS was also studied. The surface morphology of the corroded steel samples was evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). LHS significantly reduces the corrosion rates of mild steel, with the maximum inhibition efficiency (IE) being 71.09% at 30 °C in the presence of 500 ppm of LHS. The IE of LHS is synergistically increased in the presence of SDS and CTAB. The SEM and AFM photographs show a clearly different surface morphology in the presence of additives. LHS alone and in combination with surfactants obeys Langmuir adsorption isotherm from the fit of the experimental data of all concentration and temperature studied. The calculated thermodynamic parameters for adsorption reveal strong interaction between the inhibitors and the mild steel surface, and suggest physical adsorption. The results obtained by potentiodynamic polarization measurements are consistent with the results of the weight loss measurement. LHS acts more anodic than cathodic inhibitor.  相似文献   

16.
The corrosion inhibition of mild steel in 1 M HCl solution by cefotaxime sodium has been studied by Tafel polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The inhibitor showed 95.8% inhibition efficiency at optimum concentration 300 ppm. Results obtained revealed that inhibition occurs through adsorption of the cefotaxime on metal surface without modifying the mechanism of corrosion process. Potentiodynamic polarization studies suggest that it is a mixed type of inhibitor. Electrochemical impedance spectroscopy techniques were also used to investigate the mechanism of corrosion inhibition.  相似文献   

17.
The inhibition effect of 2,3-dihydroxyflavone on the corrosion of mild steel in 100-600 ppm aqueous hydrochloric acid solution has been investigated by weight loss and electrochemical impedance spectroscopy. The corrosion inhibition efficiency increases with increasing concentration and time. The effect of temperature on the corrosion behavior of mild steel in 1 M HCl with addition of inhibitor was studied at the temperature range of 300-330 K. UV-Vis, FTIR, and surface analysis (SEM) was also carried out to establish the corrosion inhibitive property of this inhibitor in HCl solution. The adsorption of this inhibitor on the mild steel surface obeys the Langmuir adsorption isotherm. Electrochemical studies reveal that the inhibitor is a cathodic type.  相似文献   

18.
The inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol (PDTT) Schiff base on mild steel corrosion in 0.5 M HCl was studied for both short and long immersion time. For this purpose, potentiodynamic polarization, electrochemical impedance spectroscopy, linear polarization resistance, hydrogen gas evolution, the change of open circuit potential as a function of immersion time, SEM and AFM techniques were utilized. The PDTT Schiff base has shown remarkable inhibition on the corrosion of mild steel in 0.5 M HCl solution. The high inhibition efficiency was attributed to the blocking of active sites by adsorption of inhibitor molecules on the steel surface.  相似文献   

19.
The inhibition effect of bis-thiadiazole derivatives (BTDs) against the corrosion of mild steel in 1 M HCl solution was studied by weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. All the BTDs exhibited >90% inhibition efficiency at concentration as low as 40 ppm. The adsorption of BTDs obeyed Langmuir adsorption isotherm. Both thermodynamic and activation parameters were calculated and discussed. Polarization curves indicate that they are mixed type of inhibitors. All the BTDs were adsorbed physically at lower concentration where as chemisorption was favoured at higher concentration.  相似文献   

20.
The inhibition effect of four double Schiff bases on the corrosion of mild steel in 2 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The inhibitors were adsorbed on the steel surface according to the Langmuir adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process were calculated and discussed. Kinetic parameters activation such as Ea, ΔH∗, ΔS∗ were evaluated from the effect of temperature on corrosion and inhibition processes. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号