首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To explain the recent experimental observation of liquid-grown silicon nitride (Si3N4) crystals with a concave depression in the center of the (0001) end face, we propose a new growth mechanism and develop an analytical solution for the steady state. The model allows for atoms that diffuse via the liquid to the side surface but demands that the majority of these atoms be transported to the end caps to feed axial growth. The analysis shows that, for a large radius crystal, the redistribution of atoms by surface diffusion on the end caps requires a long relaxation time; hence, a nonequilibrium shape results. For an isolated Si3N4 crystal growing in a liquid environment, the shape of the end cap is largely determined by the ratio of the supersaturation to the equilibrium surface potential, which is inversely proportional to the crystal radius. A large shape distortion is predicted to occur during the growth stage for large-radius crystals and during the coarsening stage for a population of crystals with a large size distribution. This mechanism ceases to operate when the liquid flux to the side surface is blocked, as in silicon nitride ceramics, but is otherwise insensitive to factors such as radial growth kinetics and liquid diffusivity.  相似文献   

3.
Si3N4及其复合材料强韧化研究进展   总被引:3,自引:0,他引:3  
简述了氮化硅陶瓷的结构、性能和制备工艺,并分别通过自增韧补强、纤维/晶须强韧化、层状结构强韧化、相变强韧化以及颗粒弥散强韧化等方法对氮化硅陶瓷的强韧化研究进行了分类叙述。  相似文献   

4.
5.
The reactivity of AlN powder with water in supernatants obtained from centrifuged Si3N4 and SiC slurries was studied by monitoring the pH versus time. Various Si3N4 and SiC powders were used, which were fabricated by different production routes and had surfaces oxidized to different degrees. The reactivity of the AlN powder in the supernatants was found to depend strongly on the concentration of dissolved silica in these slurries relative to the surface area of the AlN powder in the slurry. The hydrolysis of AlN did not occur if the concentration of dissolved silica, with respect to the AlN powder surface, was high enough (1 mg SiO2/(m2 AlN powder)) to form a layer of aluminosilicates on the AlN powder surface. This assumption was verified by measuring the pH of more concentrated (31 vol%) Si3N4 and SiC suspensions also including 5 wt% of AlN powder (with respect to the solids).  相似文献   

6.
Machinability of Silicon Nitride/Boron Nitride Nanocomposites   总被引:4,自引:0,他引:4  
The machinability and deformation mechanism of Si3N4/BN nanocomposites were investigated in the present work. The fracture strength of Si3N4/BN microcomposites remarkably decreased with increased hexagonal graphitic boron nitride ( h -BN) content, although machinability was somewhat improved. However, the nanocomposites fabricated using the chemical method simultaneously had high fracture strength and good machinability. Hertzian contact tests were performed to clarify the deformation behavior by mechanical shock. As a result of this test, the damage of the monolithic Si3N4 and Si3N4/BN microcomposites indicated a classical Hertzian cone fracture and many large cracks, whereas the damage observed in the nanocomposites appeared to be quasi-plastic deformation.  相似文献   

7.
分析了二氧化锆的性质及氧空位对二氧化锆相变的影响 ,讨论了二氧化锆韧化氮化硅陶瓷的影响因素 ,提出了二氧化锆韧化氮化硅陶瓷时避免氮化锆生成、促进复相氮化硅陶瓷烧结的途径。  相似文献   

8.
A chemical process for fabrication of Si3N4/BN nanocomposite was devised to improve the mechanical properties. Si3N4/BN nanocomposites containing 0 to 30 vol% hexagonal BN ( h -BN) were successfully fabricated by hot-pressing α-Si3N4 powders, on which turbostratic BN ( t -BN) with a disordered layer structure was partly coated. The t -BN coating on α-Si3N4 particles was prepared by reducing and heating α-Si3N4 particles covered with a mixture of boric acid and urea. TEM observations of this nanocomposite revealed that the nanosized hexagonal BN ( h -BN) particles were homogeneously dispersed within Si3N4 grains as well as at grain boundaries. As expected from the rules of composites, Young's modulus of both micro- and nanocomposites decreased with an increase in h -BN content, while the fracture strength of the nanocomposites prepared in this work was significantly improved, compared with the conventional microcomposites.  相似文献   

9.
Ultrafine Si3N4 and Si3N4+ SiC mixed powders were synthesized through thermal plasma chemical vapor deposition (CVD) using a hybrid plasma which was characterized by the superposition of a radio-frequency plasma and an arc jet. The reactant, SiCl4, was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant, CH4 and/or NH3, was injected into the tail flame through multistage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction effieciency increased significantly by multistage injection compared to single-stage injection. The most striking result is that amorphous Si3N4 with a nitrogen content of about 37 wt% and a particle size of 10 to 30 nm could be prepared successfully even at the theoretical NH3/SiCl4 molar ratio of ∼ 1.33, although the crystallinity depended on the NH3/SiCl4 molar ratio and the injection method. For the preparation of Si3N4+ SiC mixed powders, the N/C composition ratio and particle size could be controlled not only by regulating the flow rate of the NH3 and CH4 reactant gases and the H2 quenching gas, but also by adjusting the reaction space. The results of this study provide sufficient evidence to suggest that multistage injection is very effective for regulating the condensation process of fine particles in a plasma tail flame.  相似文献   

10.
Silicon nitride ceramics seeded with 3 wt%β-Si3N4 whiskers of two different sizes were prepared by a modified tape casting and gas pressure sintering. The fine whiskers had a higher aspect ratio than the coarse whiskers. Quantitative texture analysis including calculation of the orientation distribution function (ODF) was used for obtaining the degrees of preferred orientation of sintered samples. The maximum multiples of random distribution (mrd) values of samples seeded with the fine and coarse whiskers were large, greater than 15 and 9, respectively. Meanwhile, the mrd value of a sample seeded with fine whiskers was only 9 when it was prepared by conventional tape casting. The microstructures and the XRD data revealed that the well-aligned whiskers grew significantly after sintering and dominated the texture. Differences among the degrees of preferred orientation of the samples were explained using Jeffrey's model on rotation of elliptical particles carried by a viscous fluid.  相似文献   

11.
Silicon carbide whiskers were synthesized in situ by direct carbothermal reduction of silicon nitride with graphite in an argon atmosphere. Phase evolution study reveals that the formation of β-SiC was initiated at 1400° to 1450°C; above 1650°C silicon was formed when carbon was deficient. Nevertheless, Si3N4 could be completely converted to SiC with molar ratio Si3N4:C = 1:3 at 1650°C. The morphology of the SiC whiskers is needlelike, with lengths and diameters changing with temperature. SiC fibers were produced on the surface of the sample fired at 1550°C with an average diameter of 0.3 μm. No catalyst was used in the syntheses, which minimizes the amount of impurities in the final products. A reaction mechanism involving the decomposition of silicon nitride has been proposed.  相似文献   

12.
The tensile creep behavior of a gas-pressure-sintered silicon nitride containing silicon carbide was characterized at temperatures between 1375° and 1450°C with applied stresses between 50 and 250 MPa. Individual specimens were tested at fixed temperatures and applied loads. Each specimen was pin-loaded within the hot zone of a split-tube furnace through silicon carbide rods connected outside the furnace to a pneumatic cylinder. The gauge length was measured by laser extensometry, using gauge markers attached to the specimen. Secondary creep rates ranged from 0.54 to 270 Gs−1, and the creep tests lasted from 6.7 to 1005 h. Exponential functions of stress and temperature were fitted to represent the secondary creep rate and the creep lifetime. This material was found to be more creep resistant than two other silicon nitride ceramics that had been characterized earlier by the same method of measurement as viable candidates for high-temperature service.  相似文献   

13.
Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride   总被引:8,自引:0,他引:8  
This study provides new perspectives on why the oxidation rates of silicon carbide and silicon nitride are lower than those of silicon and on the conditions under which gas bubbles can form on them. The effects on oxidation of various rate-limiting steps are evaluated by considering the partial pressure gradients of various species, such as O2, CO, and N2. Also calculated are the parabolic rate constants for the situations when the rates are controlled by oxygen and/or carbon monoxide (or nitrogen) diffusion. These considerations indicate that the oxidation of silicon carbide and silicon nitride should be mixed controlled, influenced both by an interface reaction and diffusion.  相似文献   

14.
The laser-chemical vapor precipitation (L-CVP) of Si3N4 powders from miktures of SiH2Cl2 and NH3 or SiC1,4 and NH3, was studied. The reactant gases were mixed in the laser beam, thus preventing low-temperature reactions. In a high-temperature electrostatic precipitator (ESP), Si3N, was collected and separated from the waste product NH4Cl. In the ESP, Si was collected at a lower temperature. A major problem in utilizing chlorinated silanes was their poor absorption of the 10.6-μm radiation. SF6 was explored for use as an inert sensitizer. Si was prepared from SiH2Cl2. Particle diameters were typically 20 to 40 nm for Si3N4 and 50 nm for Si.  相似文献   

15.
A unique, all-ceramic material capable of nonbrittle fracture via crack deflection and delamination has been mechanically characterized from 25° through 1400°C. This material, fibrous monoliths, was comprised of unidirectionally aligned 250 μm diameter silicon nitride cells surrounded by 10 to 20 μm thick boron nitride cell boundaries. The average flexure strengths of fibrous monoliths were 510 and 290 MPa for specimens tested at room temperature and 1300°C, respectively. Crack deflection in the BN cell boundaries was observed at all temperatures. Characteristic flexural responses were observed at temperatures between 25° and 1400°C. Changes in the flexural response at different temperatures were attributed to changes in the physical properties of either the silicon nitride cells or boron nitride cell boundary.  相似文献   

16.
Based on a biomimetic design, Si3N4/BN composites with laminated structures have been prepared and investigated through composition control and structure design. To further improve the mechanical properties of the composites, Si3N4 matrix layers were reinforced by SiC whiskers and BN separating layers were modified by adding Si3N4 or Al2O3. The results showed that the addition of SiC whiskers in the Si3N4 matrix layers could greatly improve the apparent fracture toughness (reaching 28.1 MPa·m1/2), at the same time keeping the higher bending strength (reaching 651.5 MPa) of the composites. Additions of 50 wt% Al2O3 or 10 wt% Si3N4 to BN interfacial layers had a beneficial effect on the strength and toughness of the laminated Si3N4/BN composites. Through observation of microstructure by SEM, multilevel toughening mechanisms contributing to high toughness of the laminated Si3N4/BN composites were present as the first-level toughening mechanisms from BN interfacial layers as crack deflection, bifurcation, and pull-out of matrix sheets, and the secondary toughening mechanism from whiskers in matrix layers.  相似文献   

17.
A three-layered composite, composed of a strong outer layer (monolithic S3N4) and a tough inner layer (fibrous Si3N4/BN monolith), was fabricated by hot-pressing. For the inner layer, a Si3N4–polymer fiber made by extrusion was coated by dipping it into a 20 wt% BN-containing slurry. The three-layered composite exhibited excellent mechanical properties, including high strength, work of fracture, and crack resistance, because of the combination of a strong outer layer and a tough inner layer. In other words, the strong outer layer withheld the applied stress, while the tough inner layer promoted crack interactions through the weak BN cell boundaries. Also, the residual thermal stress on the surface due to the anisotropy in the coefficient of thermal expansion of BN affected a median/radial crack generation after indentation.  相似文献   

18.
Oxidation of {111} single-crystal silicon and dense, chemically-vapor-deposited silicon nitride was done in clean silica tubes at temperatures of 1000° to woo°C. The oxidation rates of silicon nitride under various atmospheres (dry O2, wet O2, wet inert gas, and steam) were several orders of magnitude slower than those of silicon under the identical conditions. The activation energy for the oxidation of silicon nitride decreased from 330 to 259 kJ/mol in going from dry O2 to steam while that for Si decreased from 120 to 94 kJ/mol. The parabolic rate constant for Si increased linearly as the water vapor pressure increased. However, the parabolic rate constant for silicon nitride showed nonlinear dependency on the water vapor pressure in the presence of oxygen. The oxidation kinetics of silicon nitride is explained by the formation of nitrogen compounds (NO and NH3) at the reaction interface and the counterpermeation of these reaction products.  相似文献   

19.
Shock Synthesis of Cubic Silicon Nitride   总被引:2,自引:0,他引:2  
The phase transitions of α-Si3N4 and β-Si3N4 have been investigated by shock compression through the recovery technique and Hugoniot measurements. α- and β-Si3N4 are transformed into a cubic spinel structure ( c -Si3N4). The yield of c -Si3N4 increases with increasing shock pressure and reaches 100% at 63 GPa. The shock-synthesized c -Si3N4 powders are nanocrystals and display a high-temperature metastability up to about 1620 K. c -Si3N4 is one of the hard materials based on the measured equation of state. c -Si3N4 powders have been characterized by electron microscopy and 29Si magic angle spinning NMR spectroscopy. The purification and separation method has been developed to obtain pure c -Si3N4 powders.  相似文献   

20.
运用热力学方法分析了氮化硅陶瓷在制备和使用过程中涉及的物理化学过程,包括Si3N4烧结、Si3N4在真空中的挥发、Si3N4的稳定性、Si3N4与金属固体的作用4个方面,结合实际论述了反应发生、发展的条件、反应的优先性、生成化合物的稳定性及热力学方法的适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号