首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subtype-selective estrogens are of increasing importance as tools used to unravel physiological roles of the estrogen receptors, ERalpha and ERbeta, in various species. Although human ERalpha and ERbeta differ by only two amino acids within the binding pockets, we and others recently succeeded in generating subtype-selective agonists. We have proposed that the selectivity of the steroidal compounds 16alpha-lactone-estradiol (16alpha-LE(2), hERalpha selective) and 8beta-vinyl-estradiol (8beta-VE(2), hERbeta selective) is based on the interaction of certain substituents of these compounds with essentially one amino acid in the respective ER binding pockets. For in vitro and ex vivo pharmacological experiments with these compounds we intended to use bovine tissues available from slaughterhouses in larger quantities. Using homology modeling techniques we determined that the amino acid conferring high hERbeta-selectivity to 8beta-VE(2) is not exchanged between human and bovine ERalpha and bovine ERbeta. Thus, we predicted our steroidal hERbeta-selective compound to exhibit only weak agonistic activity at bERbeta and that bovine tissue is therefore not suited for investigation of ERbeta functions. The situation is presumably identical for pig, sheep, and the common marmoset, whereas rats, mice, and rhesus macaques are appropriate animal models to study pharmacological effects of 8beta-VE(2) in vivo. This prediction was confirmed in transactivation studies assessing estradiol (E(2)) and the two subtype-selective ligands on bovine ERbeta and on a series of hERalpha and hERbeta with mutations in their respective ligand-binding pockets. We have shown that the detailed understanding of the interactions of a compound with its target protein enables the identification of relevant species for pharmacological studies.  相似文献   

2.
3.
4.
    
Human tumor necrosis factor receptor associated factor (TRAF)-interacting protein, with a forkhead-associated domain (TIFA), is a key regulator of NF-κB activation. It also plays a key role in the activation of innate immunity in response to bacterial infection, through heptose 1,7-bisphosphate (HBP); a metabolite of lipopolysaccharide (LPS). However, the mechanism of TIFA function is largely unexplored, except for the suggestion of interaction with TRAF6. Herein, we provide evidence for direct binding, albeit weak, between TIFA and the TRAF domain of TRAF6, and it is shown that the binding is enhanced for a rationally designed double mutant, TIFA S174Q/M179D. Enhanced binding was also demonstrated for endogenous full-length TRAF6. Furthermore, the structures of the TRAF domain complexes with the consensus TRAF-binding peptides from the C terminus of wild-type and S174Q/M179D mutant TIFA, showing salt-bridge formation between residues 177–181 of TIFA and the binding pocket residues of the TRAF domain, were solved. Taken together, the results provide direct evidence and a structural basis for the TIFA–TRAF6 interaction, and show how this important biological function can be modulated.  相似文献   

5.
Pseudomonas aeruginosa is a bacterial pathogen that causes life‐threatening infections in immunocompromised patients. It produces a large armory of saturated and mono‐unsaturated 2‐alkyl‐4(1H)‐quinolones (AQs) and AQ N‐oxides (AQNOs) that serve as signaling molecules to control the production of virulence factors and that are involved in membrane vesicle formation and iron chelation; furthermore, they also have, for example, antibiotic properties. It has been shown that the β‐ketoacyl‐acyl‐carrier protein synthase III (FabH)‐like heterodimeric enzyme PqsBC catalyzes the last step in the biosynthesis of the most abundant AQ congener, 2‐heptyl‐4(1H)‐quinolone (HHQ), by condensing octanoyl‐coenzyme A (CoA) with 2‐aminobenzoylacetate (2‐ABA), but the basis for the large number of other AQs/AQNOs produced by P. aeruginosa is not known. Here, we demonstrate that PqsBC uses different medium‐chain acyl‐CoAs to produce various saturated AQs/AQNOs and that it also biosynthesizes mono‐unsaturated congeners. Further, we determined the structures of PqsBC in four different crystal forms at 1.5 to 2.7 Å resolution. Together with a previous report, the data reveal that PqsBC adopts open, intermediate, and closed conformations that alter the shape of the acyl‐binding cavity and explain the promiscuity of PqsBC. The different conformations also allow us to propose a model for structural transitions that accompany the catalytic cycle of PqsBC that might have broader implications for other FabH‐enzymes, for which such structural transitions have been postulated but have never been observed.  相似文献   

6.
    
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.  相似文献   

7.
The enzyme 4‐oxalocrotonate tautomerase (4‐OT), which catalyzes enol–keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon–carbon bond‐forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4‐OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000‐fold improvement in catalytic efficiency (kcat/Km) and a >107‐fold change in reaction specificity, by exploring small libraries in which only “hotspots” are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4‐OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site.  相似文献   

8.
Arginine methylation is a prevalent post‐translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N‐methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη‐hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi–Bi kinetic mechanism for PRMT1, based on steady‐state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.  相似文献   

9.
    
Protein lipidation is a widespread modification that regulates protein subcellular localization, structure and function. Dysregulation of protein lipidation has been implicated in various human diseases, including neurological disorders, infectious diseases and cancers. Thus lipid-modifying enzymes and their substrate proteins are emerging as attractive drug targets. The development of small-molecule modulators of protein lipidation has remarkably impacted our understanding of lipid-modification biology and potential therapeutics. In this review, we summarize recent progress in small-molecule targeting of protein lipidation and highlight therapeutic opportunities.  相似文献   

10.
    
Protein myristoylation plays key roles in biological processes, for instance, in membrane attachment and activation of proteins and in mediating protein–protein and protein–lipid interactions. Furthermore, myristoylated proteins are involved in disorders, including cancer and viral infections. Therefore, new tools to study protein myristoylation are in high demand. Herein, we report the development of photoactivatable probes, based on a diazirine-substituted analogue of myristic acid. The probes bind to and, upon irradiation, covalently label the lipid-binding chaperone protein uncoordinated 119 (UNC119). UNC119 increases overall solubility and regulates specifically the transport of myristoylated proteins between intercellular membranes. The binding mode of the probes is similar to that of the myristate moiety, and the residues inside the hydrophobic pocket of UNC119 proteins that are critical for covalent binding have been identified. The interaction with UNC119 was also demonstrated in cell lysate by means of affinity enrichment. Moreover, it is shown that the myristate analogue can be incorporated into peptide substrates by N-myristoyl transferases of Leishmania and Trypanosoma protozoan parasites.  相似文献   

11.
    
The glycoprotein quality control system exists in the endoplasmic reticulum to maintain protein homeostasis and prevent accumulation of aberrant glycoproteins. Folding sensor enzyme uridine diphosphate (UDP) glucose : glycoprotein glucosyltransferase (UGGT) plays an important role in this system through its ability to discriminate immature or misfolded glycoproteins from native ones. UGGT transfers a glucose residue to a glycoprotein containing Man9GlcNAc2 (M9; Man=mannose, GlcNAc=N-acetyl-D -glucosamine) N-glycan only when the glycoprotein has not attained a native form. We chemically prepared homogeneous glycoproteins containing M9 N-glycan in the native form as well as in misfolded forms and examined them as substrates of UGGT. Glucose transfer to misfolded glycoproteins was clearly observed by LC-MS, but glycoproteins in the native form were barely glucosylated. Furthermore, we constructed an in vitro glycoprotein folding system in the presence of UGGT and found out that all folding intermediates which appeared during folding were also glucosylated. Through these experiments, we demonstrated the usefulness of chemically synthesized homogeneous glycoproteins as probes to gain insights into the molecular basis of the glycoprotein quality control system.  相似文献   

12.
13.
    
Site-specific protein functionalization has become an indispensable tool in modern life sciences. Here, tag-based enzymatic protein functionalization techniques are among the most versatilely applicable approaches. However, many chemo-enzymatic functionalization strategies suffer from low substrate scopes of the enzymes utilized for functional labeling probes. We report on the wide substrate scope of the bacterial enzyme AnkX towards derivatized CDP-choline analogues and demonstrate that AnkX-catalyzed phosphocholination can be used for site-specific one- and two-step protein labeling with a broad array of different functionalities, displaying fast second-order transfer rates of 5×102 to 1.8×104 m −1 s−1. Furthermore, we also present a strategy for the site-specific dual labeling of proteins of interest, based on the exploitation of AnkX and the delabeling function of the enzyme Lem3. Our results contribute to the wide field of protein functionalization, offering an attractive chemo-enzymatic tag-based modification strategy for in vitro labeling.  相似文献   

14.
15.
    
A straightforward strategy is presented for the site‐specific incorporation of fluorophores or reactive probes into the extracellular matrix (ECM) protein fibronectin (Fn) by using the enzyme‐catalyzed transamidation by activated factor XIII. Characterization by SDS‐PAGE, western blotting, absorption measurements, mass spectrometry, and stepwise photobleaching for labeling quantification at the single‐molecule level showed that the labeling was efficient and restricted to the N‐terminal tails. The introduction of labels did not interfere with Fn fibrillogenesis, as verified by the incorporation of fluorescently labeled Fn into ECM and manually pulled Fn fibers. Site‐specific incorporation of an azide was used to create a template for bioorthogonal click chemistry reactions in a second bioconjugation step, thus offering versatile modification and application possibilities in the context of matrix biology and tissue engineering.  相似文献   

16.
17.
    
Human protein tyrosine phosphatase 1B (PTP1B) is a ubiquitous non-receptor tyrosine phosphatase that serves as a major negative regulator of tyrosine phosphorylation cascades of metabolic and oncogenic importance such as the insulin, epidermal growth factor receptor (EGFR), and JAK/STAT pathways. Increasing evidence point to a key role of PTP1B-dependent signaling in cancer. Interestingly, genetic defects in PTP1B have been found in different human malignancies. Notably, recurrent somatic mutations and splice variants of PTP1B were identified in human B cell and Hodgkin lymphomas. In this work, we analyzed the molecular and functional levels of three PTP1B mutations identified in primary mediastinal B cell lymphoma (PMBCL) patients and located in the WPD-loop (V184D), P-loop (R221G), and Q-loop (G259V). Using biochemical, enzymatic, and molecular dynamics approaches, we show that these mutations lead to PTP1B mutants with extremely low intrinsic tyrosine phosphatase activity that display alterations in overall protein stability and in the flexibility of the active site loops of the enzyme. This is in agreement with the key role of the active site loop regions, which are preorganized to interact with the substrate and to enable catalysis. Our study provides molecular and enzymatic evidence for the loss of protein tyrosine phosphatase activity of PTP1B active-site loop mutants identified in human lymphoma.  相似文献   

18.
19.
    
Protein arginine N-methyl transferase 4 (PRMT4) asymmetrically dimethylates the arginine residues of histone H3 and nonhistone proteins. The overexpression of PRMT4 in several cancers has stimulated interest in the discovery of inhibitors as biological tools and, potentially, therapeutics. Although several PRMT4 inhibitors have been reported, most display poor selectivity against other members of the PRMT family of methyl transferases. Herein, we report the structure-based design of a new class of alanine-containing 3-arylindoles as potent and selective PRMT4 inhibitors, and describe key structure–activity relationships for this class of compounds.  相似文献   

20.
The cyanobacterium Synechocystis sp. PCC6803 harbours one phosphopantetheinyl transferase (PPTase), Sppt. Protein modelling supported previous bioinformatics analyses, which suggested that Sppt is a Sfp‐type PPTase with the potential to phosphopantetheinylate a broad range of carrier proteins from both primary and secondary metabolism. However, no natural products are synthesised by this species, which raises interesting evolutionary and functional questions. Phosphopantetheinylation assays and kinetic data demonstrate that Sppt was able to activate its cognate fatty acid synthesis carrier protein, SACP, but was unable to effectively activate various cyanobacterial carrier proteins from secondary metabolism or glycolipid biosynthesis pathways. To our knowledge, this is the first example of a PPTase with a Sfp‐type structure, but with activity more closely resembling AcpS‐type enzymes. The broad‐range PPTase from Nodularia spumigena NSOR10 was introduced into Synechocystis sp. PCC6803 and was shown to activate a noncognate carrier protein, in vivo. This engineered strain could provide a future biotechnological platform for the heterologous expression of cyanobacterial biosynthetic gene clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号