首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although alpha-cyano-4-hydroxycinnamic acid functions as an excellent matrix for the analysis of most peptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry, the ionization of phosphorylated peptides is usually suppressed by nonphosphorylated peptides. As an alternative matrix, 2',4',6'-trihydroxyacetophenone (THAP) with diammonium citrate was found to overcome this problem for the MALDI TOF mass spectrometric analysis of proteolytic digests of phosphorylated proteins. Specifically, the abundances of phosphorylated peptides in tryptic digests of bovine beta-casein and protein kinase C (PKC)-treated mouse cardiac troponin I were enhanced more than 10-fold using THAP during positive ion MALDI TOF mass spectrometry. The protonated molecules of phosphorylated peptides were sufficiently abundant that postsource decay TOF mass spectrometry was used to confirm the number of phosphate groups in each peptide. Finally, tryptic digestion followed by analysis using MALDI TOF mass spectrometry with THAP as the matrix facilitated the identification of a unique phosphorylation site in PKC-treated troponin I.  相似文献   

2.
The identification of proteins by tandem mass spectrometry relies on knowledge of the products produced by collision-induced dissociation of peptide ions. Most previous work has focused on fragmentation statistics for ion trap systems. We analyzed fragmentation in MALDI TOF/TOF mass spectrometry, collecting statistics using a curated set of 2459 MS/MS spectra and applying bootstrap resampling to assess confidence intervals. We calculated the frequency of 18 product ion types, the correlation between both mass and intensity with ion type, the dependence of amide bond breakage on the residues surrounding the cleavage site, and the dependence of product ion detection on residues not adjacent to the cleavage site. The most frequently observed were internal ions, followed by y ions. A strong correlation between ion type and the mass and intensity of its peak was observed, with b and y ions producing the most intense and highest mass peaks. The amino acids P, W, D, and R had a strong effect on amide bond cleavage when situated next to the breakage site, whereas residues including I, K, and H had a strong effect on product ion observation when located in the peptide but not adjacent to the cleavage site, a novel observation.  相似文献   

3.
High-resolution and high-accuracy Fourier transform mass spectrometry (FTMS) is becoming increasingly attractive due to its specificity. However, the speed of tandem FTMS analysis severely limits the competitive advantage of this approach relative to faster low-resolution quadrupole ion trap MS/MS instruments. Here we demonstrate an entirely FTMS-based analysis method with a 2.5-3.0-fold greater throughput than a conventional FT MS/MS approach. The method consists of accumulating together the MS/MS fragments ions from multiple precursors, with subsequent high-resolution analysis of the mixture. Following acquisition, the multiplexed spectrum is deconvoluted into individual MS/MS spectra which are then combined into a single concatenated file and submitted for peptide identification to a search engine. The method is tested both in silico using a database of MS/MS spectra as well as in situ using a modified LTQ Orbitrap mass spectrometer. The performance of the method in the experiment was consistent with theoretical expectations.  相似文献   

4.
Characteristic ions in the MALDI TOF mass spectra from bacterial cells have been associated with four known proteins. The proteins, observed both from cells and in filtered cellular suspensions, were isolated by HPLC and identified on the basis of their mass spectra and their partial amino acid sequence, determined using the Edman method (10-15 residues). The acid resistance proteins HdeA and HdeB give rise to ions near m/z 9735 and 9060 in MALDI TOF mass spectra from cells and from extracts of both Escherichia coli 1090 and Shigella flexneri PHS-1059. However, the proteins associated with proteolytic cleavage by the peptidase Lep, rather than the precursor proteins, were observed, both using cells and from cellular extracts. A cold-shock protein, CspA, was associated with the ion near m/z 7643 from Pseudomonas aeruginosa. Similarly, a cold-acclimation protein, CapB, was identified as the source of the ion near m/z 7684 in P. putida. This last protein was homologous with a known CapB from P. fragi. While these experiments involved the detection of known or homologous proteins from typical bacteria, this same approach could also be applied to the detection of unique proteins or biomarker proteins associated with other bacteria of public health significance.  相似文献   

5.
The antigenic profile of Olea europaea pollen from different Mediterranean cultivars was obtained by MALDI mass spectrometry. A simple procedure of chemical fractionation of the whole antigen extract was developed, whereby less complex, or pure, fractions of antigen candidate were obtained prior to mass spectrometric analysis. Some of the features of protein structure and distribution probably depend on cultivar adaptation to the environment. The profilings of pollen proteins thus obtained allow the distinction of the analyzed cultivars into three distinct groups: (i) those characterized by a low Ole e 1 content; (ii) those over-enriched in Ole e 1 and (iii) that containing Ole e 3 and Ole e 7 only. The latter consists of at least four isoforms differing by the degree of glycosilation. These results demonstrate that the proposed experimental procedure, can supply valuable information on the antigens' micro heterogeneity.  相似文献   

6.
Reliable identification of posttranslational modifications is key to understanding various cellular regulatory processes. We describe a tool, InsPecT, to identify posttranslational modifications using tandem mass spectrometry data. InsPecT constructs database filters that proved to be very successful in genomics searches. Given an MS/MS spectrum S and a database D, a database filter selects a small fraction of database D that is guaranteed (with high probability) to contain a peptide that produced S. InsPecT uses peptide sequence tags as efficient filters that reduce the size of the database by a few orders of magnitude while retaining the correct peptide with very high probability. In addition to filtering, InsPecT also uses novel algorithms for scoring and validating in the presence of modifications, without explicit enumeration of all variants. InsPecT identifies modified peptides with better or equivalent accuracy than other database search tools while being 2 orders of magnitude faster than SEQUEST, and substantially faster than X!TANDEM on complex mixtures. The tool was used to identify a number of novel modifications in different data sets, including many phosphopeptides in data provided by Alliance for Cellular Signaling that were missed by other tools.  相似文献   

7.
A method for rapid and unambiguous identification of proteins by sequence database searching using the accurate mass of a single peptide and specific sequence constraints is described. Peptide masses were measured using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry to an accuracy of 1 ppm. The presence of a cysteine residue within a peptide sequence was used as a database searching constraint to reduce the number of potential database hits. Cysteine-containing peptides were detected within a mixture of peptides by incorporating chlorine into a general alkylating reagent specific for cysteine residues. Secondary search constraints included the specificity of the protease used for protein digestion and the molecular mass of the protein estimated by gel electrophoresis. The natural isotopic distribution of chlorine encoded the cysteine-containing peptide with a distinctive isotopic pattern that allowed automatic screening of mass spectra. The method is demonstrated for a peptide standard and unknown proteins from a yeast lysate using all 6118 possible yeast open reading frames as a database. As judged by calculation of codon bias, low-abundance proteins were identified from the yeast lysate using this new method but not by traditional methods such as tandem mass spectrometry via data-dependent acquisition or mass mapping.  相似文献   

8.
Stable isotope-enriched molecules are used as internal standards and as tracers of in vivo substrate metabolism. The accurate conversion of measured ratios in the mass spectrometer to mole ratios is complicated because a polyatomic molecule containing enriched atoms will result in a combinatorial distribution of isotopomers depending on the enrichment and number of "labeled" atoms. This effect could potentially cause a large error in the mole ratio measurement depending on which isotope peak or peaks were used to determine the ratio. We report a computational method that predicts isotope distributions over a range of enrichments and compares the predicted distributions to experimental peptide isotope distributions obtained by Fourier transform ion cyclotron resonance mass spectrometry. Our approach is accurate with measured enrichments within 1.5% of expected isotope distributions. The method is also precise with 4.9, 2.0, and 0.8% relative standard deviations for peptides containing 59, 79, and 99 atom % excess (15)N, respectively. The approach is automated making isotope enrichment calculations possible for thousands of peptides in a single muLC-FTICR-MS experiment.  相似文献   

9.
A computer program has been developed that helps the interpretation of MALDI/TOF postsource decay (PSD) spectra of N-linked oligosaccharides of a protein. The program includes routines for automated peak assignment and generation of a simulated PSD spectrum. From a raw spectrum, peaks are assigned automatically; i.e., numbers of saccharide residues removed from the parent ion are calculated. If the structure of the oligosaccharide is known, a simulated PSD spectrum of the oligosaccharide will be generated. The simulated PSD spectrum helps interpretation of the observed spectrum. While, in a case where several candidate structures are given, one can narrow the field of plausible structures for the unknown oligosaccharide by comparing the observed spectrum with the simulated PSD spectra. Using a Pentium 233-MHz microprocessor, it takes only a few seconds to interpret a spectrum.  相似文献   

10.
Peptide mass mapping using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in conjunction with interrogation of sequence databases is a powerful tool for the identification of proteins. Glycosylated proteins often yield poor MALDI peptide maps due to shielding of proteolytic cleavage sites and the presence of modified peptides. Here we demonstrate that enzymatic removal of N-linked glycans with simultaneous partial (50%) 18O-labeling of glycosylated asparagine residues prior to proteolysis and MALDI peptide mass mapping can overcome these problems. As a result, more peptides are observed in MALDI spectra which, in turn, increases the specificity of subsequent database searches. Furthermore, the detection of a labeled peptide directly translates into partial sequence information as N-linked carbohydrates are exclusively attached to asparagine residues that form part of the NXS/T sequence. The mass of the formerly glycosylated peptide together with the NXS/T sequence pattern represents a discriminating criterion for database searching which, on average, increases the search specificity by a factor of 100. This procedure allows the unambiguous identification of glycoproteins that would otherwise require sequencing and, at the same time, enables the identification of N-glycosylation sites with higher sensitivity than previously possible.  相似文献   

11.
Peptide identification based on tandem mass spectrometry and database searching algorithms has become one of the central technologies in proteomics. At the heart of this technology is the ability to reproducibly acquire high-quality tandem mass spectra for database interrogation. The variability in tandem mass spectra generation is often assumed to be minimal, and peptide identifications are typically based on a single tandem mass spectrum. In this paper, we characterize the variance of scores derived from replicate tandem mass spectra using several database search algorithms and demonstrate the effects of spectral variability on the correct identification of peptides. We show that the variance associated with the collection of tandem mass spectra can be substantial leading to sizable errors in search algorithm scores ( approximately 5-25% RSD) and ultimately incorrect assignments. Processing strategies are discussed to minimize the impact of tandem mass spectra variability on peptide identification.  相似文献   

12.
Direct profiling of total lipid extracts on a hybrid LTQ Orbitrap mass spectrometer by high-resolution survey spectra clusters species of 11 major lipid classes into 7 groups, which are distinguished by their sum compositions and could be identified by accurately determined masses. Rapid acquisition of survey spectra was employed as a "top-down" screening tool that, together with the computational method of principal component analysis, revealed pronounced perturbations in the abundance of lipid precursors within the entire series of experiments. Altered lipid precursors were subsequently identified either by accurately determined masses or by in-depth MS/MS characterization that was performed on the same instrument. Hence, the sensitivity, throughput and robustness of lipidomics screens were improved without compromising the accuracy and specificity of molecular species identification. The top-down lipidomics strategy lends itself for high-throughput screens complementing ongoing functional genomics efforts.  相似文献   

13.
Metabolite identification is of central importance to metabolomics as it provides the route to new knowledge. Automated identification of the thousands of peaks detected by high resolution mass spectrometry is currently not possible, largely due to the finite mass accuracy of the spectrometer and the complexity that one peak can be assigned to one or more empirical formula(e) and each formula maps to one or more metabolites. Biological samples are not, however, composed of random metabolite mixtures, but instead comprise of thousands of compounds related through specific chemical transformations. Here we evaluate if prior biological knowledge of these transformations can improve metabolite identification accuracy.Our identification algorithm - which uses metabolite interconnectivity from the KEGG database to putatively identify metabolites by name - is based on mapping an experimentally-derived empirical formula difference for a pair of peaks to a known empirical formula difference between substrate-product pairs derived from KEGG, termed transformation mapping (TM). To maximize identification accuracy, we also developed a novel semi-automated method to calculate a mass error surface associated with experimental peak-pair differences. The TM algorithm with mass error surface has been extensively validated using simulated and experimental datasets by calculating false positive and false negative rates of metabolite identification. Compared to the traditional identification method of database searching accurate masses on a single-peak-by-peak basis, the TM algorithm reduces the false positive rate of identification by > 4-fold, while maintaining a minimal false negative rate. The mass error surface, putative identification of metabolite names, and calculation of false positive and false negative rates collectively advance and improve upon related previous research on this topic [1, 2]. We conclude that inclusion of prior biological knowledge in the form of metabolic pathways provides one route to more accurate metabolite identification.  相似文献   

14.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are posttranslationally processed proteins that become tethered to the extracellular leaflet of the plasma membrane via a C-terminal glycan-like moiety. Since the first GPI-AP was described in the 1970s, more than 500 GPI-APs have been reported in a range of species, including plants, microbes, and mammals. GPI-APs are probably involved in cell signaling, cell recognition, and cell remodeling processes, and they may potentially serve as cell surface antigens or vaccine targets in pathogenic microorganisms or transformed mammalian cells. Due to the structural complexity and physicochemical properties of GPI-APs, their identification and structural characterization is a demanding analytical task. Here, we report a simple, fast and sensitive method for isolation and structural analysis of GPI-anchors using a combination of hydrophilic interaction liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) quadrupole time-of-flight tandem mass spectrometry. This method allowed analysis of GPI peptides derived from low picomole levels of the porcine kidney membrane dipeptidase. Furthermore, it allowed unambiguous assignment of the omega site via amino acid sequencing of the modified peptides. GPI-anchor-specific diagnostic ions were observed by MALDI-MS/MS at m/z 162, 286, 422, and 447, corresponding to glucosamine, mannose ethanolamine phosphate, glucosamine inositol phosphate, and mannose ethanolamine phosphate glucosamine, respectively. Thus, the methodology described herein may enable sensitive and specific detection of GPI-anchored peptides in large-scale proteomic studies of plasma membrane proteins.  相似文献   

15.
16.
Automated analyses in MALDI MS are complicated by the uneven distribution of analyte over the sample spot, resulting in areas of analyte localization, or "sweet spots". Hence, the ability to concentrate and localize samples is advantageous, especially for automated studies involving low concentrations of analyte. A method for rapidly creating a removable and affordable hydrophobic surface that is free from memory effect is presented. The potential for such compounds to serve as a practical coating for MALDI targets is examined. An example compound with a complete methodology is shown to increase sample homogeneity, peak intensity, and resolution when used for peptide mixtures with CHCA and DHB.  相似文献   

17.
Glycopeptides are typically prepared by cleaving the proteins with specific proteolytic enzymes, such as trypsin. The resulting glycopeptides tend to have weak mass spectrometry ion signals (ESI or MALDI) due to their relatively large molecular weight. The identification of glycosylation sites with tandem mass spectrometry is further complicated by fragmentation of both the peptide backbone and the glycan moiety. We explored a method using a nonspecific enzyme, pronase, to generate small glycopeptides (between two and six amino acids). These glycopeptides were enriched and desalted using a microscale hydrophilic interaction chromatography extraction device prior to MALDI QTof MS analysis. MALDI matrix, 2, 5-dihydroxybenzoic acid, doped with ammonium triscitrate, was utilized for analysis. Sodiated ions were observed as minor ions, while protonated ions were enhanced dramatically with this matrix. Collision-induced dissociation was performed on both the protonated and sodiated ions. MS/MS fragmentation spectra reveal that proton has greater affinity for the peptide moiety, while the sodium cation tends to associate with the sugar moiety. Characteristic fragment patterns allowed for identifications of glycosylation sites for both the protonated and the sodiated precursor ions. Model proteins, horseradish peroxidase and alpha1-acid glycoproteins, were analyzed to illustrate the identification of N-linked glycosylation sites and data interpretation algorithm.  相似文献   

18.
We describe the impact of advances in mass measurement accuracy, +/- 10 ppm (internally calibrated), on protein identification experiments. This capability was brought about by delayed extraction techniques used in conjunction with matrix-assisted laser desorption ionization (MALDI) on a reflectron time-of-flight (TOF) mass spectrometer. This work explores the advantage of using accurate mass measurement (and thus constraint on the possible elemental composition of components in a protein digest) in strategies for searching protein, gene, and EST databases that employ (a) mass values alone, (b) fragment-ion tagging derived from MS/MS spectra, and (c) de novo interpretation of MS/MS spectra. Significant improvement in the discriminating power of database searches has been found using only molecular weight values (i.e., measured mass) of > 10 peptide masses. When MALDI-TOF instruments are able to achieve the +/- 0.5-5 ppm mass accuracy necessary to distinguish peptide elemental compositions, it is possible to match homologous proteins having > 70% sequence identity to the protein being analyzed. The combination of a +/- 10 ppm measured parent mass of a single tryptic peptide and the near-complete amino acid (AA) composition information from immonium ions generated by MS/MS is capable of tagging a peptide in a database because only a few sequence permutations > 11 AA's in length for an AA composition can ever be found in a proteome. De novo interpretation of peptide MS/MS spectra may be accomplished by altering our MS-Tag program to replace an entire database with calculation of only the sequence permutations possible from the accurate parent mass and immonium ion limited AA compositions. A hybrid strategy is employed using de novo MS/MS interpretation followed by text-based sequence similarity searching of a database.  相似文献   

19.
Spectra of highly acidic oligosaccharides obtained by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) can be greatly enhanced in quality by coating the MALDI probe surface with a film consisting of a perfluorosulfonated ionomer (Nafion) prior to the addition of the sample-matrix mixture. For comparison, three mixtures containing highly acidic oligo- and polysaccharides derived from partial acidic hydrolysis of alginate, pectin, or carboxymethyl cellulose (CMC) were analyzed by employing probes with an uncoated gold surface or a surface coated with a Nafion or nitrocellulose film. The negative ion-mode MALDI spectra of the oligouronates (oligomers containing mannuronic/guluronic and galacturonic acid residues) obtained using uncoated or nitrocellulose-coated probes consisted of a series of broad, multiple peaks. These multiple peaks were assigned to the molecular ions of the nondissociated [M - H]- and partially sodiated [MnNa - H]-, where n = 1, 2, or 3, oligomers. In contrast, the corresponding spectra obtained with Nafion-coated probes contained only a single series of sharp peaks originating from the molecular ions ([M - H]-) of nondissociated oligomers exhibiting chain lengths of as many as approximately 15 uronic acid residues. The Nafion coating was apparently capable of removing the sodium counterions remaining in the deposit of the sample-matrix mixture on the probe, thereby greatly enhancing the signal-to-noise ratios of the peaks in the spectra. In a similar manner, higher quality spectra could also be obtained by using Nafion-coated probes for analysis of the oligouronates and CMC oligomers by positive ion-mode MALDI-MS.  相似文献   

20.
Phosphorylation is a common form of protein modification. To understand its biological role, the site of phosphorylation has to be determined. Generally, only limited amounts of phosphorylated proteins are present in a cell, thus demanding highly sensitive procedures for phosphorylation site determination. Here, a novel method is introduced which enables the localization of tyrosine phosphorylation in gel-separated proteins in the femtomol range. The method utilizes the immonium ion of phosphotyrosine at m/z 216.043 for positive ion mode precursor ion scanning combined with the recently introduced Q2-pulsing function on quadrupole TOF mass spectrometers. The high resolving power of the quadrupole TOF instrument enables the selective detection of phosphotyrosine immonium ions without interference from other peptide fragments of the same nominal mass. Performing precursor ion scans in the positive ion mode facilitates sequencing, because there is a no need for polarity switching or changing pH of the spraying solvent. Similar limits of detection were obtained in this approach when compared to triple-quadrupole mass spectrometers but with significantly better selectivity, owing to the high accuracy of the fragment ion selection. Synthetic phosphopeptides could be detected at 1 fmol/microL, and 100 fmol of a tyrosine phosphorylated protein in gel was sufficient for the detection of the phosphorylated peptide in the unseparated digestion mixture and for unambiguous phosphorylation site determination. The new method can be applied to unknown protein samples, because the identification and localization of the modification is performed on the same sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号