首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
介绍了Ni2P催化剂的活性组分结构及其加氢脱硫活性相,综述了Ni2P催化剂催化不同模型含硫化合物加氢脱硫(HDS)机理和HDS反应网络方面的最新研究进展。直接脱硫(DDS)反应路径主要发生在Ni2P催化剂的Ni(1)位,而加氢脱硫(HYD)反应路径主要发生在Ni(2)位。Ni2P表面上的NiPxSy作为活性相在HDS反应中起着重要作用。以Ni2P作为催化剂时,噻吩的HDS过程中有中间体四氢噻吩生成,二苯并噻吩的HDS主要通过DDS反应路径完成,4,6-二甲基二苯并噻吩的HDS主要通过HYD反应路径完成。  相似文献   

2.
CoMo/ZrO2-Al2O3催化剂的加氢脱硫活性   总被引:9,自引:0,他引:9  
制备了CoMo/ZrO2-Al2O3系列催化剂,用程序升温还原技术考察了ZrO2对催化剂还原性的影响,发现ZrO2的质量分数为12%时,ZrO2与活性组分间存在较强的相互作用。以二苯并噻吩为探针化合物,考察了催化剂在不同温度下的加氢脱硫(HDS)活性。结果表明,以ZrO2含量为12%的复合氧化物为载体,负载4%CoO和15%MoO3的催化剂具有最佳的催化活性,优于广泛使用的进口工业HDS催化剂KF707。  相似文献   

3.
Mo/Tio_2-Al_2O_3催化剂加氢脱硫性能的研究   总被引:5,自引:1,他引:4  
在中压反应装置上以环己烷70w%、环己烯25w%和噻吩5w%混合液为反应物,考察了Mo/TiO_2-Al_2O_3催化剂的噻吩加氢脱硫(HDS)和环已烯加氢(HYD)活性。催化剂采用三种预处理条件:(1)400℃H_2S/H_2硫化;(2)500℃H_2还原;(3)不处理。结果表明,预硫化处理的催化剂活性最高,且HYD/HDS大于1。Mo/TiO_2-Al_2O_3的HYD和HDS的活性总是比Mo/Al_2O_2高。当TiO_2的含量超过单分子层时,不经任何处理的Mo/TiO_2-Al_2O_3催化剂就具有很高的HDS和HYD性能,表明TiO_2-Al_2O_3载体有显著改善Mo催化剂加氢脱硫性能的作用。  相似文献   

4.
磷化钨催化剂的制备及加氢脱硫性能   总被引:5,自引:1,他引:4  
采用程序升温、高纯氢气还原无定形磷钨酸盐的方法制备了活性组分为磷化钨,以产Al2O3为载体的催化剂,考察了催化剂对噻吩加氢脱硫反应的催化活性。结果表明,分别用先混合后还原法和共浸渍法制备的催化剂WP2和WP3活性组分在载体表面的分散好,其噻吩加氢脱硫率稍高于先还原后混合制备的催化剂WP1。340℃时催化剂WP1,WP2和WP3的噻吩加氢脱硫率分别为91.9%,94.2%和98.3%。吡啶对催化剂的HDS活性有较大影响。  相似文献   

5.
制备了复合氧化物固体超强酸催化剂Pt-SO2-4/ZrO2-Al2O3,通过XRD、XPS、SEM、FT-IR等手段研究了其结构、表面性质及其对正丁烷异构化反应的催化活性.结果表明,适量的Al2O3稳定了四方晶相的ZrO2,抑制了ZrO2由四方晶相向单斜晶相的转变.掺杂Pt提高了正丁烷异构化反应的催化活性.采用w(Al)=1.5%的催化剂,异丁烷最高收率达37%,选择性达70%.  相似文献   

6.
制备方法对B2O3/ZrO2催化剂结构的影响   总被引:1,自引:0,他引:1  
采用XRD和TG—DTA技术对以未晶化的Zr(OH)4和已晶化的ZrOz作载体的B202/ZrO2催化剂进行了研究,考察了载体预焙烧温度、催化剂焙烧温度和B202含量对催化剂体相结构、活性组分存在状态的影响,讨论了活性组分B202对载体发生晶相变化时的作用。结果表明,在Zr(OH)4上的H3BO3使载体在焙烧时晶粒生长受阻,对载体发生的相变有明显的延迟作用;负载B203的样品在活化焙烧过程中脱水变得困难;B203含量的增加使催化剂中的ZrO2单斜晶相比例增加。  相似文献   

7.
固体超强酸SO24-/ZrO2-Al2O3催化正丁烷异构化反应研究   总被引:1,自引:0,他引:1  
在固体超强酸SO24-/ZrO2基础上添加Al2O3,利用Al2O3与ZrO2的相互作用,制备了复合氧化物固体超强酸SO24-/ZrO2-Al2O3,并通过XRD、XPS、FTIR等实验技术对催化剂的体相结构、表面性质及其对正丁烷异构化反应的催化活性进行了研究.结果表明,Al2O3的引入稳定了四方晶相的ZrO2,抑制了ZrO2由四方晶相向单斜晶相的转变,使催化剂活性显著提高,Al2O3含量为1.5%的样品异丁烷最高收率达31.7%,选择性达65.5%.  相似文献   

8.
在固体超强酸SO4^2-/ZrO2基础上添加Al2O3,利用Al2O3与ZrO:的相互作用,制备了复合氧化物固体超强酸SO4^2-/ZrO2-Al2O3,并通过XRD、XPS、FTIR等实验技术对催化剂的体相结构、表面性质及其对正丁烷异构化反应的催化活性进行了研究。结果表明,Al2O3的引入稳定了四方晶相的ZrO2,抑制了ZrO2由四方晶相向单斜晶相的转变,使催化剂活性显著提高,Al2O3含量为1.5%的样品异丁烷最高收率达31.7%,选择性达65.5%。  相似文献   

9.
NiMo/ZrO_2加氢脱硫催化剂的研究   总被引:6,自引:6,他引:0  
采用共浸法制备了未经焙烧直接硫化的NiMo/ZrO2(550)、NiMo/ZrO2(650)催化剂及550℃焙烧后再硫化的NiMo/ZrO2(550)-1催化剂,在连续流动微反装置上考察了NiMo/ZrO2系列催化剂对噻吩加氢脱硫反应的催化活性,并对催化剂进行了X射线光电子能谱(XPS)和Raman光谱表征。表征结果显示,以四方相ZrO2为载体的NiMo/ZrO2(650)催化剂,由于被硫化的更完全,催化活性高于以无定形相ZrO2为载体的NiMo/ZrO2(550)催化剂,说明载体的结构影响催化剂的催化活性;550℃焙烧后的NiMo/ZrO2(550)-1催化剂的催化活性低于未经焙烧直接硫化的NiMo/ZrO2(550)催化剂,这是由于高温焙烧增加了活性组分和载体之间的相互作用,降低了催化剂的硫化程度,进而降低了其催化活性,说明这种强相互作用不利于提高催化剂的催化活性。  相似文献   

10.
负载型超强酸催化剂ZS-SiO2的研究   总被引:1,自引:0,他引:1  
研究了载体SiO2对催化剂ZS-SiO2中ZrO2结晶过程的影响,考察了催化剂ZS-SiO2的结构、酸性和比表面积以及对正己烷异构化反应的催化活性。XRD实验结果表明,SiO2对ZrO2结晶过程的影响是复杂的。未经高温焙烧的SiO2(a)与负载在其表面的ZrO2存在着较强的化学作用,延迟了ZiO2结晶;经过高温焙烧的SiO2(b)对ZiO2的晶相有较大影响,它使ZS-SiO2(b)中四面体晶相与单斜晶相组成比例明显不同于ZS。NH3-TPD结果表明,ZS-SiO2(b)与ZS有相类似的NH3脱附谱图,它们具有相同类型的酸中心,但酸量有所不同;ZS-SiO2(a)没有明显的高温NH3脱附峰。活性评价结果表明,ZS-SiO2(b)对正己烷异构化反应有催化活性,对比无SiO2载体的催化剂ZS,其催化活性明显下降,而ZS-SiO2(a)则无催化活性。  相似文献   

11.
SO2 -4/ZrO2 的超强酸酸性与硫酸根含量、氧化锆状态和制备过程有关。在较低温度下ZrO2 由无定形转变成四方晶相 ,在较高温度下由四方晶相转变成单斜晶相。SO2 -4对上述的相变有阻抑作用。对于引入稀土的样品 (Zr/RE摩尔比为 6 0~ 2 4 0 ) ,稀土对ZrO2 在较低温度下由无定形转变成四方晶相的相变无明显的影响 ,但对较高温度下由四方晶相向单斜晶相的相变有明显的阻抑作用 ,因此 ,增强了四方晶态相和酸性中心的热稳定性 ,同时催化剂的活性稳定性也有显著的提高。  相似文献   

12.
以多级孔Y分子筛为酸性组分,采用孔饱和浸渍法制备了含分子筛的CoMoP/Al2O3加氢催化剂,通过X射线衍射、N2吸附-脱附、高分辨透射电镜、吡啶吸附红外光谱等表征手段对分子筛样品进行物化性质分析,并以4,6-二甲基二苯并噻吩为模型化合物,在固定床高压微反装置上考察多级孔分子筛的加入对4,6-二甲基二苯并噻吩加氢脱硫反应活性的影响。结果表明,多级孔Y分子筛较高的外表面积和介孔体积有利于提高分子筛B酸中心的可接近性。与参比剂CoMoP/Al2O3-Y相比,B酸酸量较高的多级孔Y分子筛催化剂的酸催化反应活性明显增强,总加氢脱硫反应活性提高。随着分子筛强B酸酸量的增加,含Y分子筛催化剂的甲基转移反应活性明显提高。  相似文献   

13.
MCM-41担载的Pd催化剂加氢脱硫反应性能   总被引:2,自引:1,他引:1  
 以含0.8%(质量分数)二苯并噻吩(DBT)的十氢萘溶液为模型化合物, 考察了Si-MCM-41、Al-MCM-41和Si-MCM-41与HY机械混合物(MY)担载的Pd催化剂加氢脱硫(HDS)反应性能, 并采用XRD、N2吸附和吡啶吸附红外光谱(Py-IR)方法对载体进行了表征. 结果表明, Al-MCM-41表面酸中心以L酸为主, MY表面主要为B酸; 而Si-MCM-41的酸性较弱. DBT在这些担载型Pd催化剂上主要通过预加氢反应路径脱硫, 催化剂活性顺序为: Pd/Al-MCM-41>Pd/MY>Pd/Si-MCM-41. 提高载体的酸性显著提高了催化剂的加氢脱硫活性, 但对其直接脱硫活性影响不大. 从DBT的HDS产物分布来看, Pd/Al-MCM-41具有较高的脱硫活性和异构化活性以及较低的加氢裂化活性; 而Pd/MY表现出较高的加氢裂化活性, 但脱硫活性相对较低, 并且失活较快. 二者在反应性能上的差异可能与MY孔道结构和表面酸中心分布不同有关. 具有良好介孔孔道结构和较高L酸与B酸比例的Al-MCM-41是一种优良的贵金属HDS催化剂载体.  相似文献   

14.
MCM-41作载体制备磷化钼加氢脱硫催化剂   总被引:1,自引:0,他引:1  
通过原位还原方法制备了MCM-41担载的MoP催化剂并用TPR和XRD方法对其进行了表征。选用二苯并噻吩(DBT)作模型化合物,考察了催化剂的加氢脱硫(HDS)反应活性和产物分布。结果表明,MoP/MCM-41催化剂的HDS反应活性明显高于MoP/Al2O3催化剂,从加氢脱硫产物分布看,DBT在MoP/Al2O3催化剂上主要通过直接脱硫路径脱硫,而在MoP/MCM-41催化剂上,直接脱硫和预加氢脱硫路径都发挥了重要作用。由中性和碱性浸渍液制备催化剂的HDS活性相当,高于用酸性浸渍液制备的催化剂。  相似文献   

15.
 本文应用量子力学计算方法研究了氢分子在超深度脱硫催化剂上吸附解离的化学过程,考察了特定催化剂簇结构模型的不同位置上H2解离的催化活性,发现活性与反应位之间有一定关系,催化剂边位的活性较高;H2在几种不同加氢脱硫催化剂上的反应热及能垒计算结果显示了几种不同催化剂体系对H2吸附解离反应的催化活性不同;对助剂在H2解离活化反应中的间接、直接作用也进行了比较。  相似文献   

16.
以水合无机硝酸锆为锆源、水合氯化铬为铬源,采用直接合成法制备含铬介孔氧化锆分子筛,并分别将纯相介孔氧化锆和掺铬介孔氧化锆经硫酸溶液浸渍制备相应的固体超强酸;采用X射线衍射、氨程序升温脱附等方法对所制分子筛及超强酸的物相及表面酸性进行表征,考察铬的掺入量及三乙醇胺的加入对合成产物的物相及性能的影响,并对超强酸催化正戊烷异构化反应活性进行评价。结果表明:铬的掺入使得氧化锆的四方相稳定存在,减少了向单斜相转化的可能性,增加了介孔氧化锆的热稳定性;三乙醇胺的加入使得含铬介孔材料的有序度增加,并有利于铬的均匀分散;在介孔氧化锆中掺铬后增加了固体超强酸的催化活性,不论是正戊烷转化率还是异戊烷选择性及收率都非常稳定,产物异戊烷的选择性在40 %左右、收率在10 %左右。  相似文献   

17.
载体的酸性和钠含量对Ni-Mo催化剂加氢脱硫性能的影响   总被引:1,自引:0,他引:1  
用MCM-41和Na交换的MCM-41(NaMCM-41)以及它们与NaY和HY沸石的机械混合物为载体负载Ni-Mo制备了加氢脱硫(HDS)催化剂,用ICP-AES、吡啶吸附红外、UV-Vis、TPR等对载体和所制备的催化剂进行了表征。以二苯并噻吩(DBT)为模型化合物评价了催化剂的HDS活性,考察了载体的酸性和Na含量对催化剂HDS活性的影响。发现Ni-Mo催化剂的HDS活性与载体的Na+含量和B酸量有关,而与L酸量关系不大。通过催化剂的HDS反应和TPR表征结果,发现在载体酸中心和活性组分之间可能存在着以溢流氢为纽带的协同作用。  相似文献   

18.
 共沉淀法制备了n(TiO2):n(ZrO2)=4:1,3:2,1:1,2:3,1:4及单一TiO2、ZrO2氧化物,并用浸渍法制备了10% MoO3/TiO2-ZrO2,10% MoO3/TiO2,10% MoO3/ZrO2催化剂。用X射线衍射、N2吸附方法对催化剂进行表征,在间歇式高压反应釜上进行活性评价。结果表明,550 ℃煅烧2 h后,TiO2-ZrO2(1:1),TiO2-ZrO2(2:3),TiO2-ZrO2(3:2)为无定型,其余载体出现不同程度的结晶。复合氧化物的比表面积均大于单一氧化物,其中TiO2-ZrO2(1:1)的比表面积最大(191.2 m2/g)。噻吩的加氢脱硫反应作为模型反应来评价催化剂的活性。催化剂的活性随着ZrO2在复合载体中含量的增加而提高,10% MoO3/TiO2-ZrO2(1:1)的活性最高。当ZrO2含量进一步增加时,催化剂的活性降低,单一ZrO2载体催化剂的活性最低。  相似文献   

19.
别以椰壳活性炭、果壳活性炭和木质活性炭为载体,采用等体积浸渍法制备了Pd/C和Pt/C催化剂。以二苯并噻吩(DBT)为模型含硫化合物,考察了不同种类活性炭负载的贵金属催化剂加氢脱硫(HDS)催化性能。结果表明,增加活性炭表面酸性含氧基团或碱性基团数量都有助于提高Pt和Pd的分散度。DBT在Pd/C和Pt/C催化剂催化下进行HDS反应时,直接脱硫(DDS)路径选择性高于加氢反应路径(HYD)选择性,其中Pt/C催化剂的HDS催化活性和DDS路径选择性都显著高于Pd/C催化剂。Pd/C和Pt/C催化剂的HDS催化性能主要取决于载体表面官能团的种类和分布。Pd和Pt催化剂的HYD反应路径选择性和稳定性都随载体表面酸性含氧基团的增加而增加,但它们断裂C-S的活性却有所降低;增加载体表面碱性基团数量则有助于提高催化剂断裂C-S的活性,但不利于其稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号