首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep drawing is one of the most used sheet metal forming processes in the production of automotive components, LPG bottles and household goods, among others. The formability of a blank depends on the process parameters such as blank holder force, lubrication, punch and die radii, die-punch clearance, in addition to material properties and thickness of the sheet metal. This paper presents a numerical study made on the deep drawing of LPG bottles. In particular, the application of both variable blank holder forces and contact friction conditions at specific location during deep drawing are considered. The numerical simulations were carried out with DD3IMP FE code. A variable blank holder force strategy was applied and the numerical results were compared with results from other blank holder force schemes. It is evident that the proposed variable blank holder force scheme reduces the blank thinning when compared to other schemes; the friction coefficient also has a significant influence on the stress–strain distribution.  相似文献   

2.
The draw force and the blank-holder variations that are obtained when drawing with friction-actuated blank holding are determined theoretically for a urethane pad of particular dimensions. A prototype tooling for blanking and drawing of sheet metal of thickness 1 mm and less to cups of diameter 100 mm at draw ratio of 1.85 with such a blank holder has been designed, fabricated and tested. Experimental results from the above tooling are presented, these including the punch and blank-holder force variations with stroke and the thickness strains in the cup wall. The experimentally-measured punch force variations are compared with the theoretical predictions. The theoretical and the experimentally-measured blank-holding force variations are presented, together with the variation of critical blank-holding force that is needed to suppress wrinkling. The differences between the theoretical and the experimental force variations are discussed.  相似文献   

3.
汽车覆盖件是以冲压件为主的零件,而作为生产冲压件的冲压模具的设计,与汽车覆盖件的成形质量息息相关。利用DYNAFORM仿真软件对某汽车防撞梁支撑板进行了拉延仿真,并依据仿真结果对其冲压速度、拉延筋布置方案、压边力、凸凹模间隙等参数进行选取和设计。通过分析厚度变化云图,采用厚度差来评价成形结果,确定了具有较好成形效果的参数组合。仿真结果表明:在确定了拉延模具采用等效实体拉延筋的设置后,压边力为360 k N、冲压速度为4000 mm·s-1、凸凹模间隙为0.66 mm时,可获得最好的成形效果。本设计及其仿真结果为其他类型的汽车防撞梁支撑板拉延模具设计提供了有效参考。  相似文献   

4.
1 INTRODUCTIONTheeffectofstressstatesonaxisymmetricsheetformabilityhasbeenstudiedundertheconditionofsolidmetalpunchforming [14 ] ,andtheeffectofblankholderpressure (BHP) ,frictioncoefficientandpunchconfigurationonthestressstateshasbeenob tained .Becauseofthedisadvantagesofsolid punchforming ,newformingtechnologyisneededtoim provethestressstatesofthesheetinformingprocessandtomeettherequirementofforminglow plastici ty ,complexshapeparts .Viscouspressureforming(VPF)isarecentlydevelopedfle…  相似文献   

5.
In forming AHSS, the lubricant must reduce the friction between die and sheet as well as the effect of heat generated from deformation and friction, especially in forming at high stroking rates. In this study, the effectiveness of stamping lubricants was evaluated by using the deep drawing and ironing tests. Various stamping lubricants were tested in forming of DP590 GA round cup samples. In these tests, the performance of lubricants was ranked via evaluation criteria that include punch force and the geometry of tested specimens. Deep drawing tests were conducted at two different blank holder forces, BHF (30 and 70 ton) at a constant ram speed (70 mm/s). The ironing tests were conducted to evaluate the performance of lubricants at higher tool–workpiece interface pressure than that is present in deep drawing. Polymer-based thin film lubricants with pressure additives (e.g. Lubricants A and B) were more effective than other lubricants as shown by the force (e.g. maximum punch force and applicable BHF without cup fracture) and geometry indicators (e.g. draw-in length, flange perimeter and sidewall thinning).The pressure and temperature distributions at the die–sheet interface were predicted by FE simulation of deep drawing and ironing tests. As expected, the value of interface pressure and temperature were maximum at the die corner radius.  相似文献   

6.
非均匀压边力板料粘性介质拉深成形的试验研究   总被引:12,自引:0,他引:12  
本文提出非均匀压边力板料粘性介质拉深成形方法,这种方法采用一种介于液—固态之间的粘性介质作为凸模传力介质,通过控制板料局部压边力的不同,使板料可控制地流入凹模口,板料成形具有顺序性。给出了拉深件几何形状和厚度分布,试验结果表明:板料厚度的变化受板料流入凹模深度的影响,采用顺序成形可减小因深度的加大而引起的板料变薄  相似文献   

7.
This paper introduces a new technique for deep drawing of elliptic cups through a conical die without blank holder or draw beads. In this technique an elliptic-cup is produced by pushing a circular blank using a flat-headed elliptic punch through a conical die with an elliptic aperture in a single stroke. A 3D parametric finite element (FE) model was built using the commercial FE-package ANSYS/APDL. Effects of die and punch geometry including, half-cone angle, die fillet radius, die aperture length and punch fillet radius on limiting drawing ratio (LDR), drawing load and thickness strain of the cup have been investigated numerically for optimal process design. A die with half cone angle of 18° has shown the best drawability for the new technique. An experimental set-up has been designed, manufactured, and used for experimental production of elliptical shaped sheet-metal cups. A total of seven punches having aspect ratios ranging from 2 to 2.25 and a die with an aspect ratio of 2 have been manufactured and used. Tensile tests were carried out to obtain the stress–strain behavior for the formed sheet metal. Experiments were conducted on blanks of brass (CuZn33) with initial thicknesses of 1.5, 1.9, 2.4 and 3 mm at different clearance ratios (c/t). Effects of blank thickness and clearance ratio on limiting drawing ratio, drawing load and thickness strain were numerically and experimentally investigated. Finite element model results showed good agreement with experimental results. An elliptic cup with a limiting drawing ratio (LDR) of 2.28 has been successfully achieved using the proposed technique and set-up.  相似文献   

8.
根据正交试验法原理,应用板料成形软件PamStamp 2G,在其他成形条件一定的情况下,对前翼子板在不同压边力、板料与模具间摩擦因数、凸模和凹模间隙、虚拟凸模成形速度下的成形进行数值分析。将模拟结果同实际成形件厚度比较,通过极差分析,得出上述因素对前翼子板成形的不同影响,其中压边力、虚拟凸模速度对成形影响较其他因素大。  相似文献   

9.
基于神经网络的拉深力智能化预测系统   总被引:5,自引:2,他引:5  
结合塑和学理论、正交试验法及神经网络技术建立了精确计算形件拉深力的智能化预测系统。根据Hill的各向异性理论导出了新的计算杯形件拉深过程中拉深力变化的理论公式,并坟出了最大拉深力,应用正交试验法分析了各工艺参数对最大拉深力的影响。针 对在应用BP网络时遇到的两个关键问题进行了讨论并提出了解决方案。应用人工神经网络技术把理论公式与试验数据结合在一起建立了智能化预测系统。  相似文献   

10.
Flexible forming technology provides significant application potential in various areas of manufacturing, particularly at a miniaturized level. Simplicity, versatility of process and feasibility of prototyping makes forming techniques by using flexible tools suitable for micro sheet metal forming. This paper reports the results of FE simulation and experimental research on micro deep drawing processes of stainless steel 304 sheets utilising a flexible die. The study presents a novel technique in which an initial gap (positive or negative) is adopted between an adjustment ring and a blank holder employed in the developed forming system. The blank holder is moveable part and supported by a particular spring that provides the required holding force. The forming parameters (anisotropy of SS 304 material, initial gap, friction conditions at various contact interfaces and initial sheet thickness) related with the forming process are in details investigated. The FE models are built using the commercial code Abaqus/Standard. The numerical predictions reveal the capability of the proposed technique on producing micro metallic cups with high quality and large aspect ratio. To verify these results, number of micro deep drawing experiments is conducted using a special set up developed for this purpose. As providing a fundamental understanding is required for the commercial development of this novel forming technique, hence the optimization of the initial gap in accordance with each sheet thickness, thickness distribution and punch force/stroke relationship are detected.  相似文献   

11.
The punch load and strain distribution of two deformed sheet steels, aluminum killed drawing quality steel (AKDQ Bare) and electro-galvanized drawing quality steel (AKDQ E.G.), are examined under the various process conditions including, die materials, punch speed, blank holding force, drawbead height and lubricant. The punch load and strain distribution ot Bare sheet steel forming is higher than that of E.G.sheet steel on the Kirkesite die set and are reversed on the GM 241 die set. The punch load and strain distribution on the Kirkesite die set is lower than those of the GM 241 die set. The changes of punch load and strain distribution ot the deformed cup for two sheet steels are affected by the frictional behavior of each sheet steel. It shows that the changes of frictional behavior having to be considered in the die design.  相似文献   

12.
金属薄板成形的数值模拟技术在冲压件生产和模具设计中起着重要的作用。文章借助Dynaform软件对某方形盒制件拉深破裂现象进行数值模拟,分析其产生原因和影响因素,并利用正交实验找出防止该制件圆角破裂的拉深条件组合。结果表明,在冲压速度、凸模圆角半径、摩擦系数和板料厚度4个因素中,凸模圆角半径对盒形件拉深破裂的影响最大。为降低因圆角处板料剧烈减薄而产生破裂的几率,盒形件拉深时应采用较大的凸模圆角半径。  相似文献   

13.
采用载荷下降法研究了双相钢DP590在不同压边力下拉深成形的减薄率。采用BCS-50AR通用板材成形性试验机进行有无润滑条件的对比拉深试验,获得成形力-凸模位移关系曲线。试验结果发现,拉深件凸缘部位和凹模圆角处的润滑有利于拉深成形,而无润滑条件下的拉深容易破裂。拉深件凸缘部位增厚,凹模圆角处和筒壁部位均有不同程度的减薄。危险断面处的减薄率最大,破裂情况下的最小减薄率为28.6%,无破裂情况下的最大减薄率为19.3%,达到实际生产要求。  相似文献   

14.
板成形数值模拟影响因素的正交试验分析   总被引:1,自引:0,他引:1  
李风  张永俊 《锻压技术》2006,31(6):21-23
根据正交试验原理,应用板料成形软件对不同压边力、模具与板料间摩擦系数、凸凹模间隙和板料初始尺寸进行数值模拟,将数值模拟的厚度同实际成形件的厚度进行比较,得出上述因素对前翼子板成形结果的影响,并预测了前翼子板较优的理论成形条件。  相似文献   

15.
In the present investigation, a deep-drawing process forming a cylindrical cup is simulated using the finite element method to study the wear depth on the draw die arc segment. Both the Blank and the die are assumed to be deformable. For the blank, both the elasto-plastic and elasto-viscoplastic material behaviors are considered, while the die material is assumed to be elastic. The materials are isotropic and Von-Mises yield criterion is employed. Considering the elasto-viscoplastic behavior for the blank, the effect of punch speed on the wear depth of the die shoulder is investigated. Meanwhile, the effects of different process parameters such as the blank holder force, the die radius as well as the clearance between the punch and the die on the wear depth profile of the arc segment of the die are investigated and several conclusive results are presented. The results show to be in good agreement with those cited in literature.  相似文献   

16.
Sheet hydroforming is a process of converting flat sheet into desired component geometry by using water pressure in a controlled manner. This paper dealt with sheet Hydromechanical forming (SHMF) of circular cup. In this process, blank is first placed on the lower die (a fluid chamber combined with draw ring) and then after sealing the blank between blank holder and draw ring, punch progresses to deform the blank. Pressure of the fluid chamber is also increased simultaneously with the punch progression. The present work endeavours to understand the effect of strain hardening exponent, anisotropy ratio and interfacial friction between blank and tools surfaces for different modes of deformation––stretching to drawing mode on sheet Hydromechanical forming of circular cups.A finite element (FE) model was developed for simulating the SHMF process using dynamic explicit, commercial code, LsDyna. The model after experimental validation used for studying the effect of above parameters on the process. The analysis reveals that higher cup depth with minimum thinning for forming dominated by stretching mode can be achieved with material of higher anisotropy ratio, strain hardening exponent by using a rough punch and effective lubrication at blank-die–blank holder interfaces. On the other hand in case of drawing as mode of deformation, thinning is influenced mainly by interfacial friction condition between blank and tool surfaces as compared to material properties.  相似文献   

17.
提出基于固体颗粒介质成形(SGMF)工艺的镁合金板材差温拉深工艺,并展开试验研究。通过对AZ31B镁合金薄板进行差温拉深成形试验,研究了成形温度、拉深速度、压边力、压边间隙、凹模圆角和润滑条件对拉深性能的影响,确定AZ31B镁合金板料最佳成形工艺参数。结果表明:该工艺可显著提高镁合金板材的成形性能,成形温度及拉深速度对板料拉深性能影响较大,板料最佳成形温度区间为290~310℃,颗粒介质与板料理想温差为110~150℃;压边力和压边间隙对拉深性能产生联合影响;此外,凹模圆角和润滑条件也对拉深性能有一定的影响。当上述工艺参数达到最佳值时成功拉深出极限拉深比(LDR)为2.41的工件。  相似文献   

18.
采用板料成形分析软件DYNAFORM对某空调前板的拉深成形进行了数值模拟仿真。对该零件成形工艺进行了优化,研究了不同的压边力、最小模具圆角半径对冲压成形的影响,通过对模拟结果的分析得出了空调前板的最优化成形方案。  相似文献   

19.
起皱是传统冲压成形和多点成形时共有的现象,尤其在无压边成形方式下很容易发生。文章采用有限元数值模拟手段,针对两种多点成形工艺和整体模具成形过程中产生的起皱现象进行了探讨,分析了无压边成形过程中不同的成形工艺对球形件起皱的影响。文章用显式动力学算法进行了数值模拟,结果表明,采用多点模具成形工艺成形1mm厚度的板料时,曲率半径为200mm的成形件起皱明显;但在相同条件下,用多点压机成形工艺的成形件结果良好,甚至成形厚度为0.5mm,曲率半径为150mm的球形件也没有起皱;而在这两种条件下,整体模具成形都有微小的起皱发生。也就是说,多点压机成形方式比多点模具成形方式以及整体模具成形方式效果更好,缺陷少,能够得到更大的变形量。  相似文献   

20.
采用Prandtl-Reuss塑流法则和Hill的屈服判据,结合有限变形理论及updated Lagrangian formulation的概念,将四边形四节点退化壳元素偶合到刚性矩阵中,组成三维有限元素的分析模式来处理板材成形问题。以材料拉伸试验所得的样片断裂面厚度为数值分析的破断准则,探讨椭圆杯拉伸成形过程中冲击荷载与冲程的关系、工件厚度分布、变形过程及成形极限等。由数值分析与实验结果得知,冲击荷载随着冲程的增加而增大,当载荷达到最大值后,样片随着冲程的增加而继续变形,直到拉伸完成为止。工件最小厚度集中在工件与压头长轴接触处,因长轴的曲率半径比短轴的小,故料片在长轴处承受了最大拉伸应力。经由椭圆压头周长与初始样片周长所定义的极限拉伸比得知,此椭圆杯成形的极限拉伸比为2.136。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号