首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-seven-filamentary AgAu-sheathed Bi-2223 tapes were fabricated by a powder-in-tube (PIT) process. And, the round wires (? 1.86 mm) were rolled to 0.35-mm tapes with 12, 7, 5, and 4 rolling passes through flat rolling, respectively. The influences of different rolling passes on the core density, deformation, and transport properties of Bi-2223/AgAu tapes were systematically investigated. It was noticed that after rolling, the Vickers microhardness of the superconducting core and deform homogeneity along both the horizontal and vertical directions on the cross section of seven-pass rolled tape were better than those on the tapes with other passes, which proved the larger core density and uniform deformation with the seven-pass rolling process. Meanwhile for the wires with 12 and 7 passes, the AgAu/superconducting core interfaces were much flatter. With the rolling passes decreasing from 12 to 4, the critical current density (Jc) first increased and then decreased. Due to the better homogeneity and flatter interfaces, Jc reached the maximum value of 17.3 kA/cm2 on the seven-pass sample. Meanwhile, the enhancement of current capacities in magnetic field applied parallel to the Bi-2223/AgAu tape surface could also be recognized as the evidence of improving intergrain connections due to the higher density in seven-pass rolled tapes.  相似文献   

2.
The powder-in-tube technique consisting of industrial processes such as wire drawing and rolling has been widely used to fabricate superconducting tapes. In the present investigation a novel technique was adopted to fabricate BSCCO 2223 tapes. Instead of wire drawing, the silver billet was reduced in size by groove rolling. Stress conditions during groove rolling were analyzed and appropriate changes were incorporated to optimize the deformation process. Subsequent thermomechanical treatment resulted in tapes with average critical current densities of 18,000 A/cm2. Phase development and microstructural evolution during the thermomechanical treatment were studied using XRD, SEM, and TEM. The electromechanical properties of monofilament and composite BSCCO tapes were evaluated by subjecting them to in situ tensile tests. The strain tolerance of the composite was found to be better than that of the monofilament BSCCO tape.  相似文献   

3.
High-T c superconducting joints between Ag-clad Bi-2223 tapes have been developed for persistent current applications. Two presintered tapes with one side of the silver stripped were lapped and then wrapped by a silver foil. The complex was uniaxially pressed followed by appropriate sintering to form a high-T c superconducting tape joint. It was found that the ratio of critical currents through the joint to that of the tape,I cj/Ic, depended on the uniaxial pressure and the sintering conduction. At liquid-nitrogen temperature 77 K,I cj/Ic=99% has been achieved. Persistent current loops formed by Bi-2223 tapes have also been fabricated and tested. Joint resistance of a loop was determined to be 4×10–13 between the decay time of 120 and 3600 sec.  相似文献   

4.
The Bi-system tapes and coils were prepared by the powder-in-tube method. The effect of processing and heat treatment on the properties of the tapes and coils was studied. It is found that the shearing stress produced by the rolling process may destroy the 2223 phase, and the destroyed 2223 phase cannot be recovered by heat treatment, whereas the pressing stress produced by the uniaxial pressing process only makes the 2223 phase grains break, and the broken 2223 phase can be closed by the heat treatment. TheJ c values of the rolling samples, pressing sample, and the coil with a diameter of 35 mm are over 1.3×104, 2.5×104, and 4×103 A/cm2 (77 K, 0 T), respectively.  相似文献   

5.
For the endurance evaluation of High Temperature Superconductors (HTS), the mechanical and transport properties of multifilamentary Bi2Sr2Ca2Cu3O10+x (Bi-2223) superconducting tapes with different reinforcements subjected to high-cycle axial fatigue loading were investigated at 77 K in the self-field. The mechanical fatigue limits based on the relations between the applied stress amplitude and the numbers of cyclic steps to reach failure (S-Nf curves) were obtained. The transport properties were evaluated with the increase of repeated cycles, N, at different applied stress amplitudes which eventually leads to the electric fatigue limit. The influence of reinforcement on the mechanical and transport properties of Bi-2223 tapes were discussed. Fractographic observation was performed in order to understand the Ic degradation mechanism in fatigue tested Bi-2223 tapes.  相似文献   

6.
《低温学》2002,42(6-7):377-382
We are developing Bi-2223/Ag tapes with a high engineering critical current density by optimizing the powder-in-tube process and are studying its application to coil and current leads. We have fabricated 250 m-long tape and investigated optimized processing conditions to enhance engineering critical current density. More bubbling was found when the tape was heat-treated with a higher heating rate. Different kinds of superconducting joints were fabricated with multi-filamentary Bi-2223/Ag tapes, and 58% of retained Ic was achieved using the insertion of Bi-2223 core between two exposed tapes. Current decay property of the persistent mode HTS coil was investigated. Rapid current decay was observed when the operating current is in a flux-flow range. We could successfully fabricate a low heat leak type HTS current lead with Bi-2223/Ag–Au tapes by employing a stepped geometry. Using this lead, safe operation of 2 kA current transport was confirmed.  相似文献   

7.
Effects of the fluctuation range of formation temperature on preparation and superconducting properties of the Bi(Pb)2223 phase have been investigated in detail. Our results show that knowledge about the temperature distribution and fluctuation in the muffle furnace is necessary for preparation of the Bi(Pb)2223 single-phase. Single-phase samples from Bi0.17Pb0.3Sr2Ca2Cu3Oy were obtained by a solid-state reaction in air at 835±5C. The best superconducting property of the as-prepared samples shows a one-step transition of a.c. susceptibility withT c=109 K. Using this optimum sintering temperature and keeping the temperature fluctuation less than 5C, we have prepared pure Bi(Pb)2223 single-phase samples with good reproducibility.  相似文献   

8.
A cryogen-free hybrid magnet without liquid helium for operation, generating 27.5 T in a 32 mm room temperature bore of an 8 MW water-cooled resistive insert magnet in an 8.5 T background field of a cryogen-free superconducting outsert magnet, is being operated for basic research at low temperatures down to 17 mK in combination with a dilution refrigerator. In addition, we are developing functional materials using a differential thermal analysis DTA at high temperatures up to 1473 K in high fields up to 27 T. This cryogen-free hybrid magnet will be upgraded to generate 29 T by improving the outer superconducting magnet. A cryogen-free 18.1 T superconducting magnet with a 52 mm room temperature experimental bore, consisting of a Bi2Sr2Ca2Cu3O10 (Bi2223) insert coil, has been developed using a GM-JT cryocooler. Recently, bronze-tape-laminated Bi2223 has revealed excellent irreversible stress tolerance of 250 MPa at 77 K. In addition, the critical current properties for recent Bi2223 tapes are largely improved from 200 to 400 A/cm-width at 77 K in a self-field. Therefore, the stainless steel reinforcement tape incorporated for the previous Bi2223 insert coil is no longer needed for a new Bi2223 one. A new Bi2223 insert coil with almost the same size as the existing insert coil can generate two times higher fields at the elevated operation current from 162 to 191 A. An upgraded cryogen-free superconducting magnet can offer a long-term experiment at the constant magnetic field of 20 T for an in-field heat-treatment investigation.  相似文献   

9.
Three Ag sheathed Bi-2223 multifilamentary tapes were produced by a processing method that consists of two sintering treatments with an intermediate deformation, involving sandwich rolling (SR), pressing (P), or normal rolling (NR). The magnetic field dependence of the critical current density J c was measured with the magnetic field H applied parallel to both the ab plane (H ab) and the c-axis (H c) of the Bi-2223 grains. Experimental results show that J c of the pressed (P) tape (J cP) for both H ab and H c is about 1.5–1.8 times higher than that for the NR tape (J cNR) and the SR tape, although J cSR is always larger than J cP. The ratio of J cSR/J cNR for H c increases rapidly with the applied magnetic field and reaches a maximum of about 12 at 0 H 900 T. The calculated density of the pinning force F as a function of magnetic field shows that curves of F for SR, NR, and P tapes all have their maximum F max at different magnetic fields and the magnitudes of F max are also different from each other. The SR tape has the largest value of F max, while NR has the smallest. XRD analysis shows that an intermediate deformation can destroy the grain alignment, and the larger the deformation, the worse the grain texture will be. Our experimental results, however, clearly show that J c for Bi-2223 multifilamentary tapes is independent of grain alignment. The significant differences in J c for tapes processed using the three different intermediate deformation procedures are dependent on the density of the pinning force and cannot be attributed to the grain alignment. Our experimental results support the view that SR processing is the best method for fabricating Ag/Bi-2223 tapes of high quality.  相似文献   

10.
10-meter-long Ag?CNi bimetallic sheathed (Bi,Pb)-2223 tapes with outer nickel sheath and inner silver sheath have been successfully fabricated by the ??Powder in tube?? technique. Microstructure and phase evolution studies by means of SEM and XRD, as well as critical current density (J c ) measurements have been performed. It is found that the nickel sheath and dwell time in the first sintering process have great influences on the texture evolution, phase transformation and J c of the Bi-2223/Ag/Ni tapes. Mono-filament (Bi,Pb)-2223 tape with a J c of 6656?A?cm?2 and 61-filament tape with a J c of 12420?A?cm?2 are obtained. Although using composite bimetallic sheaths can reduce production costs and improve mechanical properties of the Bi-2223 tapes, the Bi-2223 content and J c of Bi-2223/Ag/Ni tapes are relatively lower than that of traditional Bi-2223/Ag tapes. Meanwhile, due to higher Bi-2223 content and better alignment of Bi-2223 grains, tapes with 61-filament have higher J c than mono-filament tapes.  相似文献   

11.
《低温学》2003,43(10-11):549-553
Bi-2223/Ag tapes with different lead content (Pb=0.2–0.4) powders were fabricated. The microstructural development and Jc properties were studied with starting precursor powder prepared in different conditions. The experimental results indicate that the variations of lead content extremely influence the reactivity of precursor powders, which is closely related to the formation rate of 2223 phase, microstructure and Jc values of Bi-2223/Ag tapes. In addition, the particle size distribution of precursor powders has a large effect on the transport properties. By optimizing these powder parameters, Jc values above 60,000 A/cm2 (77 K, 0 T) in short tapes were achieved.  相似文献   

12.
Electroplastic rolling (EPR) of Bi-2223/Ag superconducting wires was performed, where pulse currents were applied during rolling to introduce an electroplastic effect. It was found that the rolling force decreased significantly compared with the traditional rolling process. Furthermore, EPR favorably minimized the sausage effect. It is revealed that the electroplastic effect can facilitate the mechanical deformation of Bi-2223/Ag composites. Segments of the Bi-2223/Ag tapes were heat treated at 830 °C for different time periods. The phase assemblies of these samples suggest that current pulses contribute to faster transformation kinetics from the Bi-2212 phase to the Bi-2223 phase. In addition, a preliminary improvement of 28% of critical current density has been achieved in a fully processed tape with EPR.  相似文献   

13.
The present study shows general characteristic features of processes such as spray pyrolysis and heat-treatment, involved in the preparation of Tl-2223/CeO2/Al2O3 superconducting coatings by using aerosol pyrolysis method. The importance of the present study, however, lies in a new process to make a thick Tl-2223 superconducting layer by using spray pyrolysis. In the new method, a relatively thick BaCaCuO precursor film is firstly spray deposited on the buffered alumina substrate and then heat-treated in the presence of thallium source for phase transformation to superconducting phases to assign conductivity to the film. The thickness of the Tl-2223 layer was 2–3 μm. The crystal symmetry was found to be tetragonal with lattice parameters a=3.85, and c=35.7 Å. The T c was found to be 98 K for the samples heat treated at 870?°C for 60 min. Magnetic characterizations were conducted by using a DC-SQUID magnetometer. From the magnetization measurements, the intragrain critical-current density, J c, was calculated to be 2×104 A/cm2 at 70 K.  相似文献   

14.
High-T c superconducting joints between Ag-clad Bi-2223 tapes have been developed for persistent current applications. Two presintered tapes with one side of the silver stripped were lapped and then wrapped by a silver foil. The complex was uniaxially pressed followed by appropriate sintering to form a high-T c superconducting tape joint. It was found that the ratio of critical currents through the joint to that of the tape,I cj/Ic, depended on the uniaxial pressure and the sintering conduction. At liquid-nitrogen temperature 77 K,I cj/Ic=99% has been achieved. Persistent current loops formed by Bi-2223 tapes have also been fabricated and tested. Joint resistance of a loop was determined to be ~4×10?13 Ω between the decay time of 120 and 3600 sec.  相似文献   

15.
Thermally induced residual strain/stress in Bi2Sr2Ca2Cu3O x (Bi2223)/Ag/Ag alloy composite tapes and the dependence of material properties on the temperature have been studied numerically. Based on both the straight and bending 3D tape models, and with the temperature dependence on material properties (especially the coefficient of thermal expansion) among the constituents (Bi2223, Ag and Ag alloy sheath) of Bi2223 multifilament composite tapes, the residual strain accumulation and the distribution of the residual stress have been obtained. We found that by taking account of the temperature dependence on material properties of Bi2223 composite tapes the residual strain in the current transportation direction is up to 15 % larger than that without taking temperature dependence into account. Furthermore, by considering the distribution of the stress induced from the changing temperature, we analyzed the mechanical strength of Bi2223 composite tapes and concluded that the initial mechanical failure due to large temperature circle (intrinsically induced from the mismatch of the coefficient of thermal expansion of each constituent in composite tapes) comes from the following aspects: (i) the tensile fracture in the Bi2223 filaments occurring at the center of the tape and (ii) the delamination most likely arising at the interface between the Bi2223 filaments and Ag matrix near both edges of the cross-section of the tape, which originates at the Bi2223 side of the interface.  相似文献   

16.
Bi2Cr2Ca2Cu3O x (Bi2223) composite tapes consisting of Bi2223 filaments, metal Ag and Ag alloy are usually exposed to a high magnetic field. The mechanical behaviour of composites is determined by the distribution and content of Bi2223 filaments in a magnetic field. Several Bi2223 composite tapes have different volume fractions of Bi2223 filaments, and the volume fraction is of fundamental importance in the determination of mechanical behaviour. In this paper, we present mechanical response to understand the effect of volume fraction of Bi2223 filaments. The critical current density is determined with consideration of the self field effect firstly. Then, the results of effective elastic moduli and mechanical stresses are presented based on the micromechanics approach. The mechanical response depends not only on the material properties but also on the Lorentz force. It is concluded from the computational results that the reduction of volume fraction of filaments can increase the mechanical stability, while the critical current density is decreased. Thus, it is necessary to consider both the mechanical limitation and requirement of the critical current of tape.  相似文献   

17.
(Bi,Pb)-2223 superconducting ceramics prepared by heat treatment at 840°C and containing 0.1 to 0.5 wt % fine-particle NbC additions were characterized by microstructural analysis, x-ray diffraction, and magnetic susceptibility measurements. The introduction of 0.1 wt % NbC was found to raise the 77-K zero-field critical current density by a factor of 2 to 3, reduce the superconducting transition width, and slightly increase T c.  相似文献   

18.
We present a comprehensive study performed with high-resolution angle-resolved photoemission spectroscopy on triple-layered Bi2Sr2Ca2Cu3O10 + single crystals. By measurements above T C the Fermi surface topology defined by the Fermi level crossings of the CuO2-derived band was determined. A hole-like Fermi surface as for single and double-CuO2 layered Bi-based cuprates is found, giving new input to the current debate of the general Fermi surface topology of the high-T C superconductors. Furthermore, we present measurements of the superconducting gap of Bi-2223 and show that there are clear indications for a strong anisotropy of the superconducting gap. The universal properties of this phase in comparison to the other Bi-based cuprates will be discussed.  相似文献   

19.
To improve on present critical current (J c) performance, multifilamentary Ag/Bi-2223 tapes with a large range of reduction rates were manufactured. The relative core mass density D was calculated, dependent on the measured geometric dimensions of the tapes. Experimental results, D vs. J c, D vs. maximum pinning force density F max , and D vs. irreversible magnetic field B irr, are quantitatively formatted. In particular, the magnetic field dependence of J c is critically dependent on its core density. If the core density increases by 10%, J c of the tapes in this experiment is enhanced by as much as 100%. Therefore, in the present state of the technological process for manufacturing Ag/Bi-2223 tape, increasing the core density is clearly a significant strategy in improving the electronic and magnetic properties of the tapes and enhancing the capacity for carrying current at high magnetic fields. The limit of the bulk self-field-J c can be calculated by the relationships of J c vs. D. The limit is estimated to be on the order of 200 kA/cm2 for multifilamentary Bi-2223 tapes, which was supported by magneto-optical (MO) magnetization measurements results. It is a hard task to approach this limit with the present state of the art in manufacturing Ag/Bi-2223 tape, and it is the time to suggest some new ideals for Bi-2223 tapes to promote large-scale applications.  相似文献   

20.
Bi-2223 tape was one of the high-temperature superconductors with commercial applications. One of the applications was bending and winding Bi-2223 tape into solenoids to produce high magnetic fields. To study bending properties, three multifilamentary of Bi-2223 tapes sheathed with silver alloys were manufactured. Bending experiments for the tapes were performed, and critical currents I c of tapes with definite bending radius were measured. And, current transferring mechanisms in filaments were analyzed, as well. Experimental results showed that silver alloy sheathed tapes had better bending properties than pure silver-sheathed one. On the contrary, to describe bending radius dependence of I c , a statistical model was suggested. The model expected that bending radius dependence of I c was following an exponential law that was quantitatively expressed by mathematic expressions. Bending dependence of I c could be calculated from the expression and calculated results agreed with experimental data very well. Therefore, the suggested model has successfully explained the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号