首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V. Ruiz 《Electrochimica acta》2010,55(25):7495-7500
Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m2 g−1, and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et4NBF4/ACN) is investigated.Carbon materials with a low average pore size (<∼0.6 nm) exhibited electrolyte accessibility issues and an associated decrease in capacitance at high charging rates. PFA carbons with larger average pore sizes exhibited greatly improved performance, with specific electrode capacitances of 150 F g−1 at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg−1 and 38 kW kg−1 on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g−1 at current densities as high as 250 A g−1. The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.  相似文献   

2.
The present paper shows that the performance of an inexpensive activated carbon used in electrochemical capacitors can be significantly enhanced by a simple treatment with KOH at 850 °C. The changes in the specific surface area, as well as in the surface chemistry, lead to high capacitance values, which provide a noticeable energy density.The KOH-treatment of a commercial activated carbon leads to highly pure carbons with effective surface areas in the range of 1300-1500 m2 g−1 and gravimetric capacitances as high as three times that of the raw carbon.For re-activated carbons, one obtains at low current density (50 mA g−1) values of 200 F g−1 in aqueous electrolytes (1M H2SO4 and 6M KOH) and around 150 F g−1 in 1M (C2H5)4NBF4 in acetonitrile. Furthermore, the resulting carbons present an enhanced and stable performance for high charge/discharge load in organic and aqueous media.This work confirms the possibilities offered by immersion calorimetry on its own for the prediction of the specific capacitance of carbons in (C2H5)4NBF4/acetonitrile. On the other hand, it also shows the limitations of this technique to assess, with a good accuracy, the suitability of a carbon to be used as capacitor electrodes operating in aqueous electrolytes (H2SO4 and KOH).  相似文献   

3.
The activated carbon beads (ACB) are prepared by a new preparation method, which is proposed by mixing the coal tar pitch and fumed silica powder at a certain weight ratio and activation by KOH at different weight ratios and different temperatures. The BET surface area, pore volume and average pore size are obtained based on the nitrogen adsorption isotherms at 77 K by using ASAP 2010 apparatus. The results show that our samples have much high specific surface area (SSA) of 3537 m2 g−1and high pore volume value of 3.05 cm3 g−1. The percentage of mesopore volume increases with the weight ratio of KOH/ACB ranging from 4% to 72%. The electrochemical double layer capacitors (EDLCs) are assembled with resultant carbon electrode and electrolyte of 1 mol L−1 Et4NBF4/PC. The specific capacitance of the ACB sample could be as high as 191.7 F g−1 by constant current charge/discharge technique, indicating that the ACB presents good characteristics prepared by the method proposed in this work. The investigation of influence of carbon porosity structure on capacitance indicates that the SSA plays an important role on the capacitance and all the pore sizes of less than 1 nm, from 1 to 2 nm and larger than 2 nm contribute to the capacitance. Mesopore structure is beneficial for the performance at high current density.  相似文献   

4.
This study shows that carbide-derived carbons (CDCs) with average pore size distributions around 0.9-1 nm and effective surface areas of 1300-1400 m2 g−1 provide electrochemical double-layer capacitors with high performances in both aqueous (2M H2SO4) and aprotic (1M (C2H5)4NBF4 in acetonitrile) electrolytes.In the acidic electrolytic solution, the gravimetric capacitance at low current density (1 mA cm−2) can exceed 200 F g−1, whereas the volumetric capacitance reaches 90 F cm−3. In the aprotic electrolyte they reach 150 F g−1 and 60 F cm−3.A detailed comparison of the capacitive behaviour of CDCs at high current density (up to 100 mA cm−2) with other microporous and mesoporous carbons indicates better rate capabilities for the present materials in both electrolytes. This is due to the high surface area, the accessible porosity and the relatively low oxygen content.It also appears that the surface-related capacitances of the present CDCs in the aprotic electrolyte are in line with other carbons and show no anomalous behaviour.  相似文献   

5.
Performance of templated mesoporous carbons in supercapacitors   总被引:1,自引:0,他引:1  
By analogy with other types of carbons, templated mesoporous carbons (TMCs) can be used as supercapacitors. Their contribution arises essentially from the double layer capacity formed on their surface, which corresponds to 0.14 F m−2 in aqueous electrolytes such as H2SO4 and KOH and 0.06 F m−2 for the aprotic medium (C2H5)4NBF4 in CH3CN. In the case of a series of 27 TMCs, it appears that the effective surface area determined by independent techniques can be as high as 1500-1600 m2 g−1, and therefore exceeds the value obtained for many activated carbons (typically 900-1300 m2 g−1). On the other hand, the relatively low amount of surface oxygen in the present TMCs, as opposed to activated carbons, reduces the contribution of pseudo-capacitance effects and limits the gravimetric capacitance to 200-220 F g−1 for aqueous electrolytes. In the case of non-aqueous electrolyte, it rarely exceeds 100 F g−1.It is also shown that the average mesopore diameter of these TMCs does not improve significantly the ionic mobility compared with typical activated carbons of pore-widths above 1.0-1.3 nm.This study suggests that activated carbons remain the more promising candidates for supercapacitors with high performances.  相似文献   

6.
Jun Yan  Tong Wei  Milin Zhang 《Carbon》2010,48(13):3825-3833
We present a quick and easy method to synthesize graphene-MnO2 composites through the self-limiting deposition of nanoscale MnO2 on the surface of graphene under microwave irradiation. These nanostructured graphene-MnO2 hybrid materials are used for investigation of electrochemical behaviors. Graphene-MnO2 composite (78 wt.% MnO2) displays the specific capacitance as high as 310 F g−1 at 2 mV s−1 (even 228 F g−1 at 500 mV s−1), which is almost three times higher than that of pure graphene (104 F g−1) and birnessite-type MnO2 (103 F g−1). Interestingly, the capacitance retention ratio is highly kept over a wide range of scan rates (88% at 100 mV s−1 and 74% at 500 mV s−1). The improved high-rate electrochemical performance may be attributed to the increased electrode conductivity in the presence of graphene network, the increased effective interfacial area between MnO2 and the electrolyte, as well as the contact area between MnO2 and graphene.  相似文献   

7.
A series of coal-based activated carbons representing a wide range of mesopore content, from 16.7 to 86.9%, were investigated as an electrode in electric double layer capacitors (EDLCs) in 1 mol l−1 H2SO4 and 6 mol l−1 KOH electrolytic solutions. The activated carbons (ACs) used in this study were produced from chemically modified lignite, subbituminous and bituminous coals by carbonization and subsequent activation with steam. The BET surface area of ACs studied ranged from 340 to 1270 m2 g−1. The performance of ACs as EDLC electrodes was characterized using voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. For the carbons with surface area up to 1000 m2 g−1, the higher BET surface area the higher specific capacitance (F g−1) for both electrolytes. The surface capacitance (μF cm−2) increases also with the mesopore content. The optimum range of mesopore content in terms of the use of ACs studied for EDLCs was found to be between 20 and 50%. A maximum capacitance exceeding 160 F g−1 and a relatively high surface capacitance about 16 μF cm−2 measured in H2SO4 solution were achieved for the AC prepared from a sulfonated subbituminous coal. This study shows that the ACs produced from coals exhibit a better performance as an electrode material of EDLC in H2SO4 than in KOH electrolytic solutions. For KOH, the capacitance per unit mesopore surface is slightly lower than that referred to unit micropore surface (9.1 versus 10.1 μF cm−2). However, in the case of H2SO4 the former capacitance is double and even higher compared with the latter (23.1 versus 9.8 μF cm−2). On the other hand, the capacitance per micropore surface area is the same in both electrolytes used, about 10.0 μF cm−2.  相似文献   

8.
Alar Jänes  Heisi Kurig  Enn Lust 《Carbon》2007,45(6):1226-1233
Commercial nanoporous carbon RP-20 was activated with water vapor in the temperature range from 950 °C to 1150 °C. The XRD analysis was carried out on nanoporous carbon powder samples to investigate the structural changes (graphitisation) in modified carbon that occurred at activation temperatures T ? 1150 °C. The first-order Raman spectra showed the absorption peak at 1582 cm−1 and the disorder (D) peak at 1350 cm−1. The low-temperature N2 adsorption experiments were performed at −196 °C and a specific surface area up to 2240 m2g−1 for carbon activated at T = 1050 °C was measured. The cell capacitance for two electrode activated nanoporous carbon system advanced up to 60 F g−1 giving the specific capacitance ∼240 F g−1 to one electrode nanoporous carbon ∣1.2 M (C2H5)3CH3NBF4 + acetonitrile solution interface. A very wide region of ideal polarisability for two electrode system (∼3.2 V) was achieved. The low frequency limiting specific capacitance very weakly increases with the rise of specific area explained by the mass transfer limitations in the nanoporous carbon electrodes. The electrochemical characteristics obtained show that some of these materials under discussion can be used for compilation of high energy density and power density non-aqueous electrolyte supercapacitors with higher power densities than aqueous supercapacitors.  相似文献   

9.
Using a gel electrolyte for electric double layer capacitors usually encountered a drawback of poor contact between the electrolyte and the electrode surface. A gel electrolyte consisting of poly(ethylene oxide) crosslinked with poly(propylene oxide) as a host, propylene carbonate (PC) as a plasticizer, and LiClO4 as a electrolytic salt was synthesized for double layer capacitors. Diglycidyl ether of bisphenol-A was blended with the polymer precursors to enhance the mechanical properties and increase the internal free volume. This gel electrolyte showed an ionic conductivity as high as 2 × 10−3 S cm−1 at 25 °C and was electrochemically stable over a wide potential range (ca. 5 V). By sandwiching this gel-electrolyte film with two activated carbon cloth electrodes (1100 m2 g−1 in surface area), we obtained a capacitor with a specific capacitance of 86 F g−1 discharged at 0.5 mA cm−2, while the capacitance was 82 F g−1 for a capacitor equipped with a liquid electrolyte of 1 M LiClO4/PC. The capacitance decrease with the current density was less significant for the gel-electrolyte capacitor. We found that the less restricted ion diffusion near the electrolyte/electrode interface led to the smaller overall resistance of the gel-electrolyte capacitor. The high performance of the gel-electrolyte capacitor has demonstrated that the developed polymer network not only facilitated ion motion in the electrolyte bulk phase but also gave an intimate contact with the carbon surface. The side chains of the polymer in the amorphous phase could stretch across the boundary layer at the electrolyte/electrode interface to come into contact with the carbon surface, thus improving transport of Li+ ions by the segmental mobility in polymer.  相似文献   

10.
Two kinds of functionalized graphene sheets were produced by thermal exfoliation of graphite oxide. The first kind of functionalized graphene sheets was obtained by thermal exfoliation of graphite oxide at low temperature in air. The second kind was prepared by carbonization of the first kind of functionalized graphene sheets at higher temperature in N2. Scanning electron microscopy images show that both two kinds of samples possess nanoporous structures. The results of N2 adsorption-desorption analysis indicate that both of two kinds of samples have high BET surface areas. Moreover, the second kind of functionalized graphene sheets has a relatively higher BET surface area. The results of electrochemical tests is as follows: the specific capacitance values of the first kind of functionalized graphene sheets in aqueous KOH electrolyte are about 230 F g−1; the specific capacitance values of the second kind of functionalized graphene sheets with higher BET surface areas are only about 100 F g−1; however, compared with the first kind of functionalized graphene sheets, the second kind has a higher capacitance retention at large current density because of its good conductive behaviors; furthermore, in non-aqueous EC/DEC electrolyte, the specific capacitance values of the first kind sample and the second kind sample are about 73 F g−1 and 36 F g−1, respectively.  相似文献   

11.
Activated carbon fiber cloth (ACFC) electrodes with high double layer capacitance and good rate capability were prepared from polyacrylonitrile (PAN) fabrics by optimizing the carbonization temperature prior to CO2 activation. The carbonization temperature has a marked effect on both the pore structure and the electrochemical performances of the ACFCs. Moderate carbonization at 600 °C results in higher specific surface area and larger pore size, and hence higher capacitance and better rate capability. The specific capacitance of the ACFCs in 6 mol L−1 KOH aqueous solution can be as high as 208 F g−1. It remains 129 F g−1 as the current density increases to 10 000 mA g−1.  相似文献   

12.
A hybrid supercapacitor based on manganese oxide, activated carbon and polymer electrolyte was developed and electrochemically investigated. The capacitive performance obtained from the polymer electrolyte based supercapacitor was similar to that of an aqueous electrolyte based supercapacitor, tested for comparison in the same operative conditions. A durability test carried out for 2500 cycles showed stable and slowly increasing performance. The specific capacitance of hybrid supercapacitor was 48 F g−1 (192 F g−1 as a mean one electrode capacitance), in which that of the positive electrode was 384 F g−1 of MnO2 and that of negative electrode 117 F g−1 of carbon. The impedance analysis evidenced that although the polymer electrolyte based hybrid supercapacitor showed higher resistance compared to that of the liquid electrolyte based supercapacitor, this drawback was counterbalanced by better ion transport features, which were evident at lower frequencies, where similar values of capacitances were obtained from the different supercapacitors.  相似文献   

13.
A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite [MnO2/P(An-co-oAs)] was successfully synthesized by a delamination/reassembling process using P(An-co-oAs) ionomer and layered manganese oxide in aqueous solution. This nanocomposite obtained was then characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), electron microscopy (SEM), and thermogravimetric (TG) analysis. X-ray diffraction and electron microscope analysis showed that the MnO2/P(An-co-oAs) nanocomposite had a lamellar structure with increasing interlayer spacing. The MnO2/P(An-co-oAs) nanocomposite exhibited substantially improved conductivity, which was near 100 times greater than that of its pristine MnO2 (3.5 × 10−7 S cm−1). The specific capacitance of the MnO2/P(An-co-oAs) nanocomposite reached 262 F g−1 in 1 M Na2SO4 at a current density of 1 A g−1, which was significantly higher than that of either of its two pristine materials [MnO2 (182 F g−1) or P(An-co-oAs) (127 F g−1)] owing to the synergic effect between the two pristine components. The fabrication mechanism of the nanocomposite was also proposed and discussed in this paper.  相似文献   

14.
A ternary composite of CNT/polypyrrole/hydrous MnO2 is prepared by in situ chemical method and its electrochemical performance is evaluated by using cyclic voltammetry (CV), impedance measurement and constant-current charge/discharge cycling techniques. For comparative purpose, binary composites such as CNT/hydrous MnO2 and polypyrrole/hydrous MnO2 are prepared and also investigated for their physical and electrochemical performances. The specific capacitance (SC) values of the ternary composite, CNT/hydrous MnO2 and polypyrrole/hydrous MnO2 binary composites estimated by CV technique in 1.0 M Na2SO4 electrolyte are 281, 150 and 35 F g−1 at 20 mV s−1 and 209, 75 and 7 F g−1 at 200 mV s−1, respectively. The electrochemical stability of ternary composite electrode is investigated by switching the electrode back and forth for 10,000 times between 0.1 and 0.9 V versus Ag/AgCl at 100 mV s−1. The electrode exhibits good cycling stability, retaining up to 88% of its initial charge at 10,000th cycle. A full cell assembled with the ternary composite electrodes shows a SC value of 149 F g−1 at a current loading of 1.0 mA cm−2 during initial cycling, which decreased drastically to a value of 35 F g−1 at 2000th cycle. Analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmet-Teller (BET) surface area measurement and inductively coupled plasma-atomic emission spectrometry (ICP-AES) are also used to characterize the composite materials.  相似文献   

15.
Nanowire-structured MnO2 active materials were prepared by a chemical precipitation method and their supercapacitive properties for use in the electrodes of supercapacitors were investigated by means of cyclic voltammetry in an aqueous gel electrolytes consisting of 1 M Na2SO4 and fumed silica (SiO2). The MnO2 electrode showed a maximum specific capacitance of 151 F g−1 after 1000 cycles at 100 mV s−1 when using the gel electrolyte containing 3 wt.% of SiO2, which is higher than 121 F g−1 obtained when using the 1 M Na2SO4 liquid electrolyte alone.  相似文献   

16.
Five nanoporous carbons (NPCs) were prepared by polymerizing and then carbonizing carbon precursor of furfuryl alcohol accommodated in a porous metal-organic framework (MOF-5, [Zn4O(bdc)3], bdc = 1,4-benzenedicarboxylate) template. The Brunauer-Emmett-Teller (BET) surface areas for five NPC samples obtained by carbonizing at the temperatures from 530 to 1000 °C fall into the range from 1140 to 3040 m2 g−1 and the dependence of BET surface areas on carbonization temperatures shows a “V” shape. All the five NPC samples have a pore size distribution centered at about 3.9 nm. As electrode materials for supercapacitor, the NPC samples obtained at the temperatures higher than 600 °C display the ideal capacitor behaviors and give rise to almost constant specific capacitance (above 100 F g−1 at 5 mV s−1) at various sweep rates, which is associated with their mesoporous characteristics. However, the NPC sample with the highest BET surface area (3040 m2 g−1) obtained by carbonizing at 530 °C gives a unusually low capacitance (12 F g−1 at 5 mV s−1), which may be attributed to the poor conductivity of the carbon material due to the low carbonization temperature.  相似文献   

17.
Electrochemical deposition of polyaniline (PANI) is carried out on a porous carbon substrate for supercapacitor studies. The effect of substrate is studied by comparing the results obtained using platinum, stainless steel and porous carbon substrates. PANI deposited at 100 mV s−1 sweep rate by potentiodynamic technique on porous carbon substrate is found to possess superior capacitance properties. Experimental variables, namely, concentrations of aniline monomer and H2SO4 supporting electrolyte are varied and arrived at the optimum concentrations to obtain a maximum capacitance of PANI. Low concentrations of both aniline and H2SO4, which produce PANI at low rates, are desirable. The PANI deposits prepared under these conditions possess network morphology of nanofibrils. Capacitance values as high as 1600 F g−1 are obtained and PANI coated carbon electrodes facilitate charge-discharge current densities as high as 45 mA cm−2 (19.8 A g−1). Electrodes are found to be fairly stable over a long cycle-life, although there is some capacitance loss during the initial stages of cycling.  相似文献   

18.
Poor crystallined α-MnO2 grown on multi-walled carbon nanotubes (MWCNTs) by reducing KMnO4 in ethanol are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Telle (BET) surface area measurement, which indicate that MWCNTs are wrapped up by poor crystalline MnO2 and BET areas of the composites maintain the same level of 200 m2 g−1 as the content of MWCNTs in the range of 0-30%. The electrochemical performances of the MnO2/MWCNTs composites as electrode materials for supercapacitor are evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurement in 1 M Na2SO4 solution. At a scan rate of 5 mV s−1, rectangular shapes could only be observed for the composites with higher MWCNTs contents. The effect of additional conductive agent KS6 on the electrochemical behavior of the composites is also studied. With a fixed carbon content of 25% (MWCNTs included), MnO2 with 20% MWCNTs and 5% KS6 has the highest specific capacitance, excellent cyclability and best rate capability, which gives the specific capacitance of 179 F g−1 at a scan rate of 5 mV s−1, and remains 114.6 F g−1 at 100 mV s−1.  相似文献   

19.
Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 °C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L−1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g−1 at a current density of 0.1 A g−1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.  相似文献   

20.
The capacitive behavior of activated carbons with different pore structures in two kinds of electrolytes, Bu4NBF4 and Et4NBF4 in propylene carbonate (PC) was studied using three kinds of cell configuration. The correlations between adsorbed ion size and pore size on the positive and negative electrodes were investigated. The matching of pore size and cation size was more predominant in the capacitor unit, especially for the electrode materials with less developed porosity. The asymmetric capacitance distribution of 7 F g−1 in the negative electrode and 113 F g−1 in the positive electrode occurred for electrode materials with less developed porosity. This could be ascribed to the surface saturation of the negative electrode by electrolyte ions, limiting the overall capacitance and working voltage of device. However, very developed porosity could not profit from the sufficient unitization of surface area, due to a weakened interaction between ions and pores wall. The specific area capacitance experienced a significant decrease from 11.3 to 6.7 μF cm−2 with the pore volume increasing. Since the different pore sizes were required for different electrolytes ion on the negative and positive electrodes, the optimal matching between pores size and ions dimension with respect to each electrode should be considered for the maximum capacitance value of the capacitor unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号