首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The role of cutting fluids is well known for the importance of removing heat from the cutting edge, lubricating the sliding chip contact and transporting the metal chips away from the cutting zone. Dry machining leads to increased cutting temperatures and higher wear rates resulting in shorter tool life; this is particularly evident in the cutting of high strength materials. Diamond coated cutting inserts are not usually considered for machining titanium due to rapid oxidation of the coating at the temperatures typical of titanium machining. This paper examines the formation of hot-spots on the rake face during dry and near-dry turning of titanium using conventional cemented carbide inserts. Machining performance is assessed by measurement of tool wear and tool life. Trials with an internally cooled tool with a specially designed, diamond coated insert have shown that the heat from the cutting operation can be rapidly diffused over the entire surface of the insert and thus successfully drawn away from the tool via closed loop recirculation of coolant through the tool holder. This enables wear to be inhibited by management of rake face temperature to keep it below the critical temperatures at which these prominent wear mechanisms operate. Measurements of change in coolant temperature before and after circulation are used to quantify the heat removed from the cutting process. The low friction coefficient and high thermal conductivity of diamond, assisted by the indirect cooling, results in longer tool life whilst maintaining high standards of surface finish.  相似文献   

2.
Machining with minimum quantity lubrication (MQL) is state of the art. Previous investigations were, however, concerned with tool optimisation and the surface quality of workpieces as well as coating technology. By now the same or partly better machining results than in conventional cutting with flood lubrication can be achieved due to adjusted tool geometries, workpiece materials and coatings. Tests about burr formation in short hole drilling exist for dry cutting or the machining with emulsion. This paper expands these results to the burr formation in machining with MQL.  相似文献   

3.
The selection of optimum machining parameters and tool geometry for difficult to cut materials used in aerospace applications is usually controlled by the quality and integrity of the surface produced, the burr formation and the part distortion. In this paper, a finite element model is developed to simulate the effects of tool flank wear and chip formation on residual stress when orthogonal cutting Ti-6AI-4V. A crack propagation module is also developed and incorporated into the finite element solver to accurately simulate the segmental chips produced during machining of titanium. The predicted results emphasize the importance of modelling the chip formation mechanism and tool wear correctly because of their effect on the cutting forces and temperature field. This subsequently influences the magnitude and distributions of the residual stress. Good correlation was obtained between measured and predicted residual stress distribution.  相似文献   

4.
An experimental investigation was conducted in this work to analyze the effect of the workpiece microstructure on tool wear behavior and stability of the cutting process during marching difficult to cut titanium alloys: Ti–6Al–4V and Ti-555. The analysis of tool–chip interface parameters such as friction, temperature rise, tool wear and workpiece microstructure evolution under different cutting conditions have been investigated. As the cutting speed increases, mean cutting forces and temperature show different progressions depending on the considered microstructure. Results show that wear modes of cutting tools used for machining the Ti-555 alloy exhibit contrast from those obtained for machining the Ti–6Al–4V alloy. Because of the fine-sized microstructure of the near-β titanium Ti-555, abrasion mode was often found to be the dominate wear mode for cemented cutting tools. However, adhesion and diffusion modes followed by coating delamination process were found as the main wear modes when machining the usual Ti–6Al–4V alloy by the same cutting tools. Moreover, a deformed layer was detected using SEM–EDS analysis from the sub-surface of the chip with β-grains orientation along the chip flow direction. The analysis of the microstructure confirms the intense deformation of the machined surface and shows a texture modification.  相似文献   

5.
以难加工材料42CrMo高强度钢为研究对象,针对42CrMo高强度钢内排屑深孔钻削时存在断屑困难等问题,开展42CrMo高强度钢BTA深孔钻削试验研究。为了获得理想的切屑形态,分析BTA深孔钻削机床主轴转速与进给量对切屑形态的影响规律。试验结果表明:当转速为195 r/min、进给量为0.18 mm/r时,切屑呈现理想的C形屑、短卷屑,刀具磨损相对最小,有利于切屑顺畅排出,加工过程稳定。  相似文献   

6.
在车铣复合加工中心Mazak Integrex 200Y上,切削速度为v=150、200 m/min及干式切削条件下,采用硬质合金刀具H13A对钛合金TC4进行正交车铣(顺铣)磨损试验。研究表明高速正交车铣钛合金时,正常磨损阶段前刀面出现不同程度切屑黏结及积屑瘤,后刀面主要以黏结磨损为主,磨损相对均匀;急剧磨损阶段,前刀面切屑黏结加剧,形成连续切屑,缠绕刀具;后刀面由于黏结作用刀具材料被切屑黏结物带走,形成黏结凹坑。刀具磨损的主要原因为黏结磨损、氧化磨损,通过X射线电子能谱(XPS)证明刀具磨损表面有TiO_2、WO_3和Co_3O_4等氧化物生成,分析其对刀具磨损的影响。  相似文献   

7.
深孔加工的BTA套料工艺方式,工艺系统是处于内、外切削液和切屑包容的环境中,系统的任何微小外扰,都会造成系统的失稳,引起钻杆振动和刀具非正常磨损与崩刃。通过分析高精度、重型油缸侧缸的BTA深孔套料工艺,提出工艺系统失稳的解决措施,通过实际生产验证了措施的有效性。通过工艺优选试切试验,找出适合重型油缸深孔套料的一些加工参数,对生产中类似工件深孔工艺参数的选取具有参考价值。  相似文献   

8.
The chip light emission and morphology, cutting forces, surface roughness, and tool wear in turning of Zr-based bulk metallic glass (BMG) material are investigated. Machining results are compared with those of aluminum 6061-T6 and AISI 304 stainless steel under the same cutting conditions. This study demonstrates that the high cutting speeds and tools with low thermal conductivity and rake angle activate the light emission and chip oxidation in BMG machining. For the BMG chip without light emission, serrated chip formation with adiabatic shear band and void formation is observed. The cutting force analysis further correlates the chip oxidation and specific cutting energy and shows the significant reduction of cutting forces for machining BMG at high cutting speeds. The machined surface of BMG has better surface roughness than that of the other two work materials. Some tool wear features, including the welding of chip to the tool tip and chipping of the polycrystalline cubic boron nitride (PCBN) tool edge, are reported for turning of BMG. This study concludes that BMG can be machined with good surface roughness using conventional cutting tools.  相似文献   

9.
通过BTA深孔钻钻削EA4T钢的实验,探究在切削EA4T钢过程中切屑的形成机制。通过统计不同的切削用量所对应的切屑类型,进而分析用BTA深孔钻钻削EA4T钢过程中改变切削用量对切屑形态的影响。在此基础上反推出BTA深孔钻钻削EA4T钢时,切削用量的实际控制范围,为实际生产提供一定的理论依据。实验结果显示用BTA深孔钻钻削EA4T钢,分屑、断屑效果良好,并且可以在很大的范围内以不同的切削速度或进给量都能得到较理想的C型屑。  相似文献   

10.
钛合金高速切削切屑形成机理的有限元分析   总被引:2,自引:0,他引:2  
钛合金在切削加工时容易产生锯齿状切屑,周期性的锯齿状切屑会引起切削力高频波动,从而影响加工表面质量和刀具寿命。然而其切屑形成的机理尚无统一的结论。本研究采用刚塑性有限元模型以及正交化Cockroft—Latham断裂准则,对钛合金Ti6A14V高速正交切削进行了仿真。仿真结果显示,周期性断裂理论能很好地解释钛合金锯齿状切屑形成的机理,主剪切变形区应力状态的变化是裂纹萌生与扩展的主要原因。研究结论与相关试验切屑显微照片特征相吻合,可以为实现钛合金高速切削提供理论依据和技术支持。  相似文献   

11.
In this work, an attempt is made to reduce the detrimental effects that occurred during machining of Ti–6Al–4V by employing surface textures on the rake faces of the cutting tools. Numerical simulation of machining of Ti–6Al–4V alloy with surface textured tools was employed, taking the work piece as elasto-plastic material and the tool as rigid body. Deform 3D software with updated Lagrangian formulation was used for numerical simulation of machining process. Coupled thermo-mechanical analysis was carried out using Johnson-cook material model to predict the temperature distribution, machining forces, tool wear and chip morphology during machining. Turning experiments on Ti–6Al–4V alloy were carried out using surface textured tungsten carbide tools with micro-scaled grooves in preferred orientation such as, parallel, perpendicular and cross pattern to that of chip flow. A mixture of molybdenum disulfide with SAE 40 oil (80:20) was used as semi-solid lubricant during machining process. Temperature distribution at tool–chip interface was measured using an infrared thermal imager camera. Feed, thrust and cutting forces were measured by a three component-dynamometer. Tool wear and chip morphology were captured and analyzed using optical microscopic images. Experimental results such as cutting temperature, machining forces and chip morphology were used for validating numerical simulation results. Cutting tools with surface textures produced in a direction perpendicular to that of chip flow exhibit a larger reduction in cutting force, temperature generation and reduced tool wear.  相似文献   

12.
本试验针对目前硬质合金刀具加工石英纤维增强陶瓷基复合材料时存在的刀具磨损严重、加工质量差、效率低下等问题,对比了硬质合金刀具钻孔、PCD刀具钻孔和电镀金刚石套料钻螺旋铣磨制孔的效果,分析了切削力对制孔质量的影响。研究结果表明:纬纱纤维对X向和Y向切削力的影响明显大于经纱纤维,垂直于纬纱纤维方向的切削力较小,平行于纬纱纤维方向的切削力较大;PCD刀具钻孔质量相对较好,刀具磨损不明显,适用于石英纤维增强陶瓷基复合材料的制孔加工。   相似文献   

13.
Tool friction plays a very important role in machining titanium and nickel-based alloys and is an important parameter in Finite Element based machining simulations. It is the source for the high amount of heat generation, and as a result, the excessive flank wear during machining these materials. The worn tool is known to create poor surface qualities with high tensile surface residual stresses, machining induced surface hardening, and undesirable surface roughness. It is essential to develop a methodology to determine how and to what extent the friction is built up on the tool. This study facilitates a determination methodology to estimate the stress distributions on the rake and flank surfaces of the tool and resultant friction coefficients between the tool and the chip on tool rake face, and the tool and the workpiece on tool flank face. The methodology is applied to various tool edge radii and also utilized in solving stagnation point location on the tool edge. Predicted friction results are further validated with comparison of predicted stress distributions from FE simulations for machining of titanium alloy Ti-6Al-4V and the nickel-based alloy IN-100. It was found that tool stresses and friction are mainly influenced by tool rake angle, edge radius, and tool flank wear and are slightly affected by the cutting conditions in the ranges that were considered in this study.  相似文献   

14.
Titanium alloy is widely used in the aerospace industry for applications requiring high strength at elevated temperature and high mechanical resistance. The difficulty of dislocation motion through the microstructure is responsible for its high yield strength. However, the main problems encountered when machining titanium alloy are the low material removal rate and the short tool life.This study investigated the suitability of uncoated cemented carbide tools in ball-end milling of the aerospace titanium alloy Ti-6242S. The experiments were carried out under dry cutting condition. Cutting speeds in the range of 60–150 m/min were considered. The axial and radial depths of cut were kept constant at 2.0 and 8.8 mm, respectively, and the feed rate values of 0.1 and 0.15 mm/tooth were selected. SEM analysis has been carried out on the worn tools and shows that flank wear and excessive chipping on the flank edge are the main tool failure modes. For both feed rates, the results demonstrate that the higher the cutting speed the better is the surface finish. The FEM simulation provides good results on modelling of chip formation and can be helpful to calculate the contact parameters and to understand the tool wear mechanisms when dry machining aerospace titanium alloys.  相似文献   

15.
High-throughput drilling of titanium alloys   总被引:3,自引:1,他引:3  
Experiments of high-throughput drilling of Ti–6Al–4V at 183 m/min cutting speed and 156 mm3/s material removal rate (MRR) using a 4 mm diameter WC–Co spiral point drill were conducted. The tool material and geometry and drilling process parameters, including cutting speed, feed, and fluid supply, were studied to evaluate the effect on drill life, thrust force, torque, energy, and burr formation. The tool wear mechanism, hole surface roughness, and chip light emission and morphology for high-throughput drilling were investigated. Supplying the cutting fluid via through-the-drill holes has proven to be a critical factor for drill life, which can be increased by 10 times compared to that of dry drilling at 183 m/min cutting speed and 0.051 mm/rev feed. Under the same MRR of 156 mm3/s with a doubled feed of 0.102 mm/rev (91 m/min cutting speed), over 200 holes can be drilled. The balance of cutting speed and feed is essential to achieve long drill life and good hole surface roughness. This study demonstrates that, using proper drilling process parameters, spiral point drill geometry, and fine-grained WC–Co tool material, the high-throughput drilling of Ti alloy is technically feasible.  相似文献   

16.
Liquid lubricants have traditionally been used to control the high heat generation in machining; however, the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. Minimization or possible elimination of cutting fluids substituting their functions by some other means is emerging as a thrust area of research in machining. Solid lubricant assisted machining is a novel concept to control the machining zone temperature without polluting the environment. The focus of this study is to explore the possibility of application of graphite as a lubricating medium in drilling of AISI 4340 steel, as a means to reduce the heat generated due to friction, towards finding an alternative to conventional coolants. To this end, an optimized solid lubricant application method, electrostatic solid lubrication experimental setup has been envisaged for effective supply of solid lubricant mixture as a high velocity jet and at an extremely low flow rate to the machining zone, thus meeting environmental requirements. The process performance is judged in terms of thrust force, tool wear, chip thickness, hole diameter and surface finish of machined workpiece keeping the other conditions constant. A comparison with the results obtained in wet and dry machining is also provided. The results obtained from the experiments show the effectiveness of the use of the solid lubricant as a viable alternative to wet and dry machining through reduction in the cutting zone temperature and favourable change in chip–tool and work–tool interaction. The proper selection and application of solid lubricant can lead to low cost, and this concept could emerge as an effective alternative to conventional coolants.  相似文献   

17.
Recent trends of downsizing and miniaturization of components, e.g. in the automotive industry for the manufacturing of fuel injectors or in the medical industry for the production of bone screws or surgical instruments, increase the importance of mechanical deep hole drilling with small diameters. Unfortunately, there are still some open challenges regarding this process. In addition to the unfavorable ratio of the cutting edge rounding to the achievable feed rates and undeformed chip thicknesses which results in significant mechanical tool loads, the control of the chip formation and the removal constitutes a major difficulty. The slender tool dimensions, especially the small cross sections of the chip flutes, necessitate a favorable chip formation to achieve the required process safety and productivity. Therefore, analyses of the chip formation, when machining difficult-to-cut materials provide the means for an effective process design. This analysis, however, is particularly difficult due to the closed operating zone. Quick-stop devices used for the chip formation analyses so far are limited in the tool diameter respectively the revolution speed. Furthermore the informative value is limited, because a quick-stop test takes a significant time to stop and thus the instantaneous cutting conditions during the tool retraction are altered. To overcome these restrictions, a new method for the analysis of the chip formation in small diameter deep hole drilling is presented in this paper. It is based on the utilization of a high-speed camera and tailored material samples. The experimental set-up and the results of first analyses conducted under minimum quantity lubrication are presented. The chip formation process is analyzed for the single-lip gun drilling of the nickel-based alloy Inconel718 and the bainitic steel 20MnCrMo7.  相似文献   

18.
This paper is concerned with the experimental and numerical study of face milling of Ti-6Al-4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool-chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.  相似文献   

19.
Carbon fiber reinforced plastics (CFRP) are used for various aircraft structural components because of their superior mechanical and physical properties such as high specific strength, high specific stiffness, etc. However, when CFRP are machined, rapid tool wear and delamination are troublesome. Therefore, cost effective and excellent quality machining of CFRP remains a challenge. In this paper, the rotary ultrasonic elliptical machining (RUEM) using core drill is proposed for drilling of holes on CFRP panels. This method combines advantages of core-drill and elliptical tool vibration towards achieving better quality, delamination free holes. The cutting force model and chip-removal phenomenon in ultrasonic elliptical vibration cutting are introduced and analyzed. The feasibility to machine CFRP for RUEM is verified experimentally. The results demonstrate that compared to conventional drilling (CD), the chip-removal rate has been improved, tool wear is reduced, precision and surface quality around holes is enhanced, delamination at hole exits has been prevented and significant reduction in cutting force has been achieved.  相似文献   

20.
In the field of ultra-precision machining, the study of the relation between chip morphology and tool wear is significant, since tool wear characteristics can be reflected by morphologies of cutting chips. In this research, the relation between chip morphology and tool flank wear is first investigated in UPRM. A cutting experiment was performed to explore chip morphologies under different widths of flank wear land. A geometric model was developed to identify the width of flank wear land based on chip morphology. Theoretical and experimental results reveal that the occurrence of tool flank wear can make the cutting chips truncated at both their cut-in and cut-out sides, and reduce the length of cutting chips in the feed direction. The width of truncation positions of the cutting chip can be measured and used to calculate the width of flank wear land with the help of the mathematical model. The present research is potentially used to detect tool wear and evaluate machined surface quality in intermittent cutting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号