首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E.J. Ra  E. Raymundo-Piñero  F. Béguin 《Carbon》2009,47(13):2984-2992
Porous carbon nanofiber paper has been obtained by one-step carbonization/activation of PAN-based nanofiber paper at temperatures from 700 to 1000 °C in CO2 atmosphere. The paper was used as supercapacitor electrode without any binder or percolator. At low temperature, e.g., ?900 °C, nitrogen enriched carbons with a poorly developed specific surface area (SBET ? 400 m2/g) are obtained. In aqueous electrolytes, these carbons withstand high current loads without a noticeable decrease of capacitance, and the normalized capacitance reaches 67 μF/cm2. At 10 s time constant, the values of energy and power densities are 3-4 times higher than for activated carbons (AC) presenting higher specific surface area. By carbonization/activation at 1000 °C, subnanometer pores are developed and SBET = 705 m2/g. Despite moderate BET specific surface area, the capacitance reaches values higher than 100 F/g in organic electrolyte. At high power densities, the nanofiber paper obtained at 1000 °C outperforms the energy density retention of ACs in organic electrolyte. The high power capability of the carbon nanofiber papers in the two kinds of electrolytes is attributed both to the high intrinsic conductivity of the fibers and to the high diffusion rate of ions in the opened mesopores.  相似文献   

2.
New carbon materials have been synthesized by chlorinating niobium carbide at different temperatures. During the reaction, the volatile niobium chloride, mainly NbCl5, is formed and eliminated leaving the carbon in the shape of spherical particles. TEM examination of the remaining particles revealed that at 400 °C and 700 °C they are composed of a NbC core with an amorphous carbon shell outside. The NbC cores are very small (∼20 nm) at 700 °C and they are not observed at 900 °C. Carbon particles without the NbC core present a more ordered structure composed of concentric wavy graphene layers. This structure seems intermediate between carbon onions and carbon blacks. The 900 °C sample presents a very high BET surface area (1292 m2 g−1) and the lower temperature samples exhibit a hysteresis phenomenon that can be attributed to the existence of large pores in the interspace between the NbC core and the carbon shell.  相似文献   

3.
A series of activated carbons (ACs) with progressively changing nanotextural characteristics was obtained by heat-treatment of a bituminous coal at temperatures ranging from 520 to 1000 °C, and subsequent activation by KOH at 700 °C or 800 °C. As the pre-treatment temperature increases, the total pore volume VT decreases from 1.28 to 0.30 cm3 g−1, and the BET specific surface area from 3000 to 800 m2 g−1. The specific capacitance determined for each series of ACs using symmetric two electrode cells in 6 mol L−1 KOH varies almost linearly with the BET surface area, suggesting that the charge accumulation is controlled primarily by the surface area development. A further analysis of the electrochemical behaviour in different electrolytic media—aqueous and organic—shows that an adequate pore size is more important than a high surface area in order to obtain high values of capacitance. Theoretical values of volumetric capacitance could be evaluated without considering the size of ions, which is always uncertain in solution, and compared with the experimental data as a function of the pore width. The efficiency of pore filling, i.e., of double layer formation, is optimal when the pore size is around 0.7 nm in aqueous media and 0.8 nm in organic electrolyte. A study of the performance of the positive and negative electrodes during the charge/discharge of the capacitor, reveals an additional pseudo-faradaic contribution due to oxygenated functionalities within the working potential window of the negative electrode. This effect is more pronounced for the ACs series obtained at 700 °C, because of their higher oxygen content.  相似文献   

4.
Activated carbon adsorbents were prepared by phosphoric acid activation of fruit stones in an argon atmosphere at various temperatures in the 400-1000 °C range and at different acid/precursor impregnation ratios (0.63-1.02). The surface chemistry of the carbons was investigated by elemental analysis, cation exchange capacity (CEC, measured by neutralization of NaOH with acidic surface groups), infrared spectroscopy and potentiometric titration. Porous structure was derived from adsorption isotherms (N2 at −196 °C and CO2 at 0 °C). It was demonstrated that all carbons show considerable cation exchange capacity, the maximum (CEC = 2.2 mmol g−1) being attained at 800 °C, which coincides with the maximum contents of phosphorus and oxygen. The cation exchange properties of phosphoric acid activated carbons from fruit stones are chemically stable in very acidic and basic solutions. Proton affinity distributions of all carbons show the presence of three types of surface groups with pK at 2.0-3.3, 4.6-5.9 and 7.6-9.1. These pK ranges were ascribed primarily to: (a) phosphorus-containing and carboxylic groups; (b) lactonic groups, and (c) phenolic groups, respectively. Phosphoric acid activated carbons are microporous with a relatively small contribution of mesopores. A maximum BET surface area of 1740 m2 g−1 was attained at 400 °C.  相似文献   

5.
Porous carbons with high surface area were successfully prepared from thermoplastic precursors, such as poly(vinyl alcohol) (PVA), hydroxyl propyl cellulose and poly(ethylene terephthalate), by the carbonization of a mixture with MgO at 900 °C in an inert atmosphere. After carbonization the MgO was dissolved out using a diluted sulfuric acid and the carbons formed were isolated. The mixing of the PVA carbon precursor with the MgO precursors (reagent grade MgO, magnesium acetate or citrate) was done either in powder form or in an aqueous solution. The BET surface area of the carbons obtained via solution mixing could reach a very high value, such as 2000 m2/g, without any activation process. The pore structure of the resultant carbons was found to depend strongly on the mixing method; the carbons prepared via solution mixing were rich in mesopores, but those produced via powder mixing were rich in micropores. The size of mesopores was found to be almost the same as that of the MgO particles, suggesting a way of controlling the mesopore size in the resultant carbons. Measurement of capacitance was carried out in 1 mol/L H2SO4 electrolyte. The porous carbon with a BET surface area of 1900 m2/g prepared at 900 °C through solution mixing of Mg acetate with PVA showed a fairly high EDLC capacitance, about 250 F/g with a current density of 20 mA/g and 210 F/g with 1000 mA/g. The rate performance was closely related to the mesoporous surface area.  相似文献   

6.
A new simple soft chemical method – synthesizing nanocrystalline MgAl2O4 spinel powder with oxalic acid as organic template and nitric acid as an oxidizing agent – is described. The method was developed with the objective of obtaining phase pure nanocrystalline MgAl2O4 spinel powder with uniform particle size and morphology at a much lower temperature than that used by conventional methods. The synthesized powders were characterized by X-ray diffractometry (XRD), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FTIR), surface area analysis (BET) and field emission scanning electron microscopy (FE-SEM). The average crystallite size of the single phase material was 30 nm. Through this method, porous MgAl2O4 powder with a high surface area of 162.2 m2g−1 and 141 m2g−1 was obtained at 600 °C and 700 °C, respectively.  相似文献   

7.
The primary byproduct of current oil shale oil extraction processes is semicoke. Its landfill deposition presents a potential threat to the environment and represents a waste of a potentially useable byproduct. Here we examine the sorptive characteristics of oil shale semicoke. Oil shale samples from Estonia, China and the United States were pyrolyzed at 500 and 1000 °C and their products analyzed for organic char content, surface area and porosity. Pyrolysis of the oil shales at temperatures of 500-1000 °C yields semicokes with organic char contents from 1.7% to 17.5% and BET surface areas of 4.4-57 m2 g−1, corresponding to 100-550 m2 g−1 of organic char. For comparison, the BET surface areas of class F coal fly ashes (combustion byproducts of bituminous coals) typically range from 2 to 5 m2 g−1, corresponding to 30-60 m2 g−1 of carbon while class C fly ash (from low rank coals) have carbon BET surface areas comparable to oil shale semicoke organic char surface areas.  相似文献   

8.
Five nanoporous carbons (NPCs) were prepared by polymerizing and then carbonizing carbon precursor of furfuryl alcohol accommodated in a porous metal-organic framework (MOF-5, [Zn4O(bdc)3], bdc = 1,4-benzenedicarboxylate) template. The Brunauer-Emmett-Teller (BET) surface areas for five NPC samples obtained by carbonizing at the temperatures from 530 to 1000 °C fall into the range from 1140 to 3040 m2 g−1 and the dependence of BET surface areas on carbonization temperatures shows a “V” shape. All the five NPC samples have a pore size distribution centered at about 3.9 nm. As electrode materials for supercapacitor, the NPC samples obtained at the temperatures higher than 600 °C display the ideal capacitor behaviors and give rise to almost constant specific capacitance (above 100 F g−1 at 5 mV s−1) at various sweep rates, which is associated with their mesoporous characteristics. However, the NPC sample with the highest BET surface area (3040 m2 g−1) obtained by carbonizing at 530 °C gives a unusually low capacitance (12 F g−1 at 5 mV s−1), which may be attributed to the poor conductivity of the carbon material due to the low carbonization temperature.  相似文献   

9.
Pure tetragonal-ZrO2 nanopowders are prepared by a molten hydroxides method, using hydrated zirconium nitrate as the starting material at 200 °C. X-ray diffraction analysis and transmission electron microscopy observation reveal that the nanopowders exhibit poor crystalline quality. After heat treated at 400 °C for 10 h in air, the nanopowders are crystalline with size range of ∼10–12 nm and most of them are agglomerated. The formation mechanism of the ZrO2 nanopowders has been proposed. The heat treated nanopowders have a BET surface area of ∼27.3 m2/g due to agglomeration. The photoluminescence of the heat treated nanopowders has been investigated at room temperature.  相似文献   

10.
La-β-Al2O3 (LaAl11O18) powders were synthesized by the polymeric precursor technique using lanthanum nitrate and aluminum nitrate. The transformations during thermal treatment of the precursor solution with ethylene glycol and citric acid were evaluated by thermal analysis. Fourier transform infrared spectroscopy analysis was performed after calcinations of the polymeric resin for determination of residual carbon. The specific surface area was evaluated by the BET method. Fine powders with ∼121 m2/g specific surface area and 20 nm average particle size were obtained and observed by scanning and transmission electron microscopy. Nearly single phase LaAl11O18 was obtained after pressing and sintering these powders at 1600 °C with small additions of MgO. The sintered pellets were characterized by X-ray diffraction and scanning electron microscopy. Impedance spectroscopy measurements carried out in the 1000–1200 °C range show the electrolytic behavior of the La-β-Al2O3 pellets, suggesting their application as solid electrolytes in high temperature potentiometric oxygen sensors.  相似文献   

11.
Carbon spherules: synthesis, properties and mechanistic elucidation   总被引:1,自引:0,他引:1  
Perfect spherical morphology of non-graphitic carbon is prepared by heating mesitylene at 700 °C in a closed cell. It produced mono-dispersed, 2.5 ± 0.05 μm size carbon spherules with a smooth surface, and which have a surface area of 8 m2/g. Morphological and structural analysis of the product is carried out with TEM, HR-SEM, BET surface area, EDAX, C, H, N, S analysis, XRD, HR-TEM, ESR and Raman spectroscopy. The formation of the spherical shape of the carbon bodies is discussed on the basis of the arrangement of the disordered carbon layers.  相似文献   

12.
The electrospinnability of pitch was improved by blending in a solution of polyacrylonitrile (PAN) resulting in the reduction of the average fiber diameter from 2000 to 750 nm. The compositions showing good spinnability are proposed within the soluble concentrations in the ternary phase diagram of the PAN-pitch-solvent, which contains lower concentration of the pitch. Activated carbon fibers were derived by stabilization, carbonization and steam activation at 700, 800, 900 and 1000 °C of the PAN/pitch electrospun fibers. The Brunauer, Emmett, Teller (BET) specific surface area ranged from 732 to 1877 m2/g.  相似文献   

13.
Theoretical investigations predict that TaON is likely to possess a relatively high hardness, thus making it a candidate for application as an abrasive or cutting tool material [J.E. Lowther, Theoretical study of potential high pressure phases of TaON and quaternary ZrTaO3N, in press]. TaON powder was produced by nitridation of amorphousTa2O5 powder in flowing ammonia in the 700–900 °C temperature range and an ammonia flow rate range of 40–50 cm3/min. The resulting powders were characterised in oxidation resistance by thermo-gravimetric analysis (TGA), phase purity by X-ray diffraction (XRD) and surface area by the BET method. The materials were densified under pressure using a belt type high pressure apparatus at 3–5.5 GPa in the temperature range of 920–1200 °C. The sintered samples were characterised in phase purity, Vickers macro-hardness and fracture toughness.  相似文献   

14.
Sr-hexaferrites prepared by co-precipitation method and calcined at 700-1000 °С have been characterized by thermogravimetric and differential thermal analysis (TG-DTA), Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), and Ar adsorption techniques. It has been shown that hexaferrite phase formed after calcination at 700 °С is amorphous and its crystallization occurs at 800 °С. Specific surface area (SBET) of the samples calcined at 700 °С is 30-60 m2/g. Reduction in hydrogen proceeds in several steps, Fe(III) in the hexaferrite structure being practically reduced to Fe0. Amount of hydrogen necessary for the reduction of the samples decrease in the order: SrMn2Fe10O19 > SrFe12O19 > SrMn6Fe6O19 > SrMn2Al10O19. Surface composition of the ferrites differs from bulk. According to XPS data, the surface is enriched with strontium. Sr segregation is most probably explained by the formation of surface carbonates and hydroxocarbonates. The main components on the surface are in oxidized states: Mn3+ and Fe3+. Maximum activity in the methane oxidation is achieved for the SrMnxFe12−xO19 (0 ? x ? 2) catalysts. These samples are characterized by highest amount of the hexaferrite phase, which promotes change of oxidation state Mn(Fe)3+ ↔ Mn(Fe)2+.  相似文献   

15.
The synthesis of BaSnO3 powders has been investigated at lyothermal conditions (temperature of 250 °C; t = 6 h), starting from SnO2·xH2O and Ba(OH)2 and methanol, ethanol, isopropanol and acetone as solvents. Among them isopropanol was found to be the most suitable medium for preparing BaSnO3. By addition of the modifier Genapol X-080 during the processing, the BET specific surface area of the end-powder was increased by a factor of 10. The as-prepared powder consisted of BaSn(OH)6. The thermal behavior, the crystallization behavior and the structure evolution of the powder during heating treatment have been studied with the TG–DTA–MS, XRD and FTIR. The weight loss of the as-prepared powder of about 12 wt% heated up to 1200 °C is mainly attributed to the dehydration around 260 °C which leads to the structure rearrangement and the building of the [SnO6] octahedra. At this temperature BaSn(OH)6 converts to an amorphous phase, from which BaSnO3 nucleates and grows with increasing temperature. The obtained BaSnO3 powders had a BET specific surface area of 16.56 m2/g and a primary crystallite size of 49 nm.  相似文献   

16.
Alumina (Al2O3)/carbon nanotube (CNT) (99/1 by weight) composite was prepared by mixing CNT dispersion with AlCl3-based gel, followed by high temperature sintering at a temperature up to 1150 °C in argon. Composite alumina precursor showed phase transition order from amorphous to γ-Al2O3 after sintered at 900 °C for 2 h, partially to θ-Al2O3 after sintered at 1000 °C for 2 h, and then partially to α-Al2O3 after sintered at 1150 °C for 2 h. By comparison, control alumina precursor directly transformed from amorphous to α-Al2O3 after sintered at a relatively low temperature of 600 °C for 2 h. Composite alumina showed porous structure with pore diameter ranging from 100 nm to 2 µm, whereas control alumina was relatively pore-free. The elevated alumina-crystal phase transition temperatures and the formation of porous structure were ascribed to the presence of CNTs in alumina precursor. The composite alumina sintered at 900 °C for 2 h containing only γ-Al2O3 had a BET surface area of 138 m2/g, which was significantly higher than that of control alumina sintered at 1150 °C for 2 h containing only α-Al2O3, ~15 m2/g.  相似文献   

17.
The influence of sintering temperature and soaking time on fracture toughness of Al2O3 ceramics has been investigated. The samples were prepared by solid state sintering at 1500, 1600 and 1700 °C for different soaking time periods. The fracture toughness of the sintered samples was determined by inducing cracks using Vickers indentation technique. Microstructural investigations on fracture surfaces obtained by three point bend test mode were made and correlated with fracture toughness. Crack deflection in the samples sintered at 1500 and 1600 °C for which ranges of fracture toughness are 5.2–5.4 and 5.0–5.6 MPa m1/2 respectively, are found. The samples sintered at 1700 °C have lower fracture toughness ranging between 4.6 and 5.0 MPa m1/2. These samples have larger grains and transgranular fracture mode is predominant. The crack deflection has further been revealed by SEM and AFM observations on fracture surface and fracture surface roughness respectively.  相似文献   

18.
A systematic study is reported on the calcination of boehmite and its associated structural changes, and their effect on densification features. Boehmite precursor gels have been calcined in the temperature range 250-1200 °C. The associated structural changes are identified by FTIR and XRD. The specific surface area measurements indicated a relatively high value of 169 m2/g for boehmite calcined at 400 °C; this value reduced to 4 m2/g on calcination at 1200 °C. In the temperature range 400-1000 °C, the coordination of aluminium changes from a quasioctahedral to a tetrahedral nature, which reverts to octahedral at 1200 °C. The precursor containing γ-alumina gives a 92.1% theoretical density, on sintering at 1500 °C due to the highly unstable quasioctahedral coordination. Boehmite precursors calcined at 400 °C and 1000 °C produced a density of 88.2% and 96.9%, respectively, in the sintered compact at 1500 °C. Boehmite calcined to α-alumina (1200 °C) possesses an octahedral structure having a density of 97.6% at 1500 °C.  相似文献   

19.
The generation of TiO2 nanoparticles by the thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700-1300 °C) and TTIP heating temperatures (80-110 °C). The photocatalytic activity of the resulting TiO2 nanoparticles was examined by measuring the rate of methylene blue decomposition. The TiO2 nanoparticles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) measurements and transmission electron microscopy (TEM). The crystallite size and crystallinity increased with increasing synthesis temperature and TTIP heating temperature. A TTIP heating temperature and synthesis temperature of 95 °C and 900 °C, respectively, were found to be the optimal synthesis conditions. The primary particle diameter obtained under optimum synthesis conditions was considerably smaller than the commercial photocatalyst (Degussa, P25). The specific surface areas were more than 134.4 m2 g− 1. Under the optimal conditions, the photocatalytic activity for methylene blue was higher than that of the commercial photocatalyst.  相似文献   

20.
Activated carbons were prepared by phosphoric acid activation of fruit stones in air at temperatures 400-1000 °C. The surface chemistry was investigated by elemental analysis, cation exchange capacity, infrared spectroscopy and potentiometric titration. The porous structure was analyzed from adsorption isotherms (N2 at 77 K and CO2 at 273 K). It was demonstrated that all carbons show considerable cation exchange capacity, the maximum (2.2 mmol g−1) being attained at 700 °C, which coincides with the maximum contents of phosphorus and oxygen. The use of air instead of argon during thermal treatment increased the amount of cation exchangeable surface groups for carbons obtained at 400-700 °C. Proton affinity distributions of all carbons show the presence of three types of surface groups with pK 1.8-3.1 (carboxylic and polyphosphates), 4.8-6.3 (second dissociation of carboxylic, weak acid in polyphosphates and enol structures) and 8.1-9.7 (phenols and enol structures). Carbons obtained in air at 400-600 °C show enhanced copper adsorption from 0.001 mol L−1 Cu(NO3)2 in acidic solutions as compared to carbons obtained in argon. Carbons obtained in air show well-developed porous structure that is equivalent or higher as compared with carbons obtained in argon; the difference being progressively increased with increasing treatment temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号