共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vehicular Technology, IEEE Transactions on》2008,57(5):2766-2778
2.
3.
4.
Space-Time Adaptive MMSE Multiuser Decision Feedback Detectors With Multiple-Feedback Interference Cancellation for CDMA Systems 总被引:1,自引:0,他引:1
In this paper, we propose a novel space-time minimum mean square error (MMSE) decision feedback (DF) detection scheme for direct-sequence code-division multiple access (DS-CDMA) systems with multiple receive antennas, which employs multiple-parallel-feedback (MPF) branches for interference cancellation. The proposed space-time receiver is then further combined with cascaded DF stages to mitigate the deleterious effects of error propagation for uncoded schemes. To adjust the parameters of the receiver, we also present modified adaptive stochastic gradient (SG) and recursive least squares (RLS) algorithms that automatically switch to the best-available interference cancellation feedback branch and jointly estimate the feedforward and feedback filters. The performance of the system with beamforming and diversity configurations is also considered. Simulation results for an uplink scenario with uncoded systems show that the proposed space-time MPF-DF detector outperforms existing schemes such as linear, parallel DF (P-DF), and successive DF (S-DF) receivers in terms of bit error rate (BER) and achieves a substantial capacity increase in terms of the number of users, compared with the existing schemes. We also derive the expressions for MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback and expressions of signal-to-interference-plus-noise ratio (SINR) for the beamforming and diversity configurations with linear receivers. 相似文献
5.
Since the publication of Alamouti's famous space‐time block code, various quasi‐orthogonal space‐time block codes (QSTBC) for multi‐input multi‐output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2n (n = 3, 4,…) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum‐likelihood receiver or low‐complexity zero‐forcing receiver. 相似文献
6.
《IEEE transactions on information theory / Professional Technical Group on Information Theory》2008,54(12):5427-5446
7.
8.
《IEEE transactions on information theory / Professional Technical Group on Information Theory》2008,54(10):4528-4547
9.
In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space-time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity. 相似文献
10.
The arrival of new data services for wireless mobile communications requires an efficient use of the available bandwidth. Interference-limited cellular systems based on code-division multiple access (CDMA) can benefit from multiuser detection (MUD) and beamforming with antenna array to reduce multiple-access interference. Group-based techniques have been proposed to reduce the complexity of space-time MUD and have been shown to provide a performance-complexity tradeoff between matched filtering and full MUD. In this paper, the intergroup interference, which is a limiting factor in group-based systems, is reduced using multistage parallel interference cancellation after group-based minimum mean square error (MMSE) linear filtering. In addition, the extra resources that are available at the receiver are exploited by sharing users among groups. The proposed receiver is shown to converge, as the number of stages increases, to the full space-time MMSE linear MUD filter. The results show that the new approach provides bit error rate (BER) performance close to the full MUD receiver at a fraction of the complexity. 相似文献
11.
《Vehicular Technology, IEEE Transactions on》2008,57(5):2792-2803
12.
Ngoc-Dung ao Tellambura C. 《IEEE transactions on information theory / Professional Technical Group on Information Theory》2010,56(1):168-180
In this paper, a new class of full-diversity, rate-one space-time block codes (STBCs) called semiorthogonal algebraic space-time block codes (SAST codes) is proposed. SAST codes are delay optimal when the number of transmit antennas is even. The SAST codeword matrix has a generalized Alamouti structure where the transmitted symbols are replaced by circulant matrices and the commutativity of circulant matrices simplifies the detection of transmit symbols. SAST codes with maximal coding gain are constructed by using rate-one linear threaded algebraic space-time (LTAST) codes. Compared with LTSAT codes, SAST codes not only reduce the complexity of maximum-likelihood detection, but also provide remarkable performance gain. They also outperform other STBC with rate one or less. SAST codes also perform well with suboptimal detectors such as the vertical-Bell Laboratories layered space-time (V-BLAST) nulling and cancellation receiver. Finally, SAST codes attain nearly 100% of the Shannon capacity of open-loop multiple-input-single-output (MISO) channels. 相似文献
13.
Diggavi S.N. Calderbank A.R. Dusad S. Al-Dhahir N. 《IEEE transactions on information theory / Professional Technical Group on Information Theory》2008,54(1):33-50
Rate and diversity impose a fundamental tradeoff in wireless communication. High-rate space-time codes come at a cost of lower reliability (diversity), and high reliability (diversity) implies a lower rate. However, wireless networks need to support applications with very different quality-of-service (QoS) requirements, and it is natural to ask what characteristics should be built into the physical layer link in order to accommodate them. In this paper, we design high-rate space-time codes that have a high-diversity code embedded within them. This allows a form of communication where the high-rate code opportunistically takes advantage of good channel realizations while the embedded high-diversity code provides guarantees that at least part of the information is received reliably. We provide constructions of linear and nonlinear codes for a fixed transmit alphabet constraint. The nonlinear constructions are a natural generalization to wireless channels of multilevel codes developed for the additive white Gaussian noise (AWGN) channel that are matched to binary partitions of quadrature amplitude modulation (QAM) and phase-shift keying (PSK) constellations. The importance of set-partitioning to code design for the wireless channel is that it provides a mechanism for translating constraints in the binary domain into lower bounds on diversity protection in the complex domain. We investigate the systems implications of embedded diversity codes by examining value to unequal error protection, rate opportunism, and packet delay optimization. These applications demonstrate that diversity-embedded codes have the potential to outperform traditional single-layer codes in moderate signal-to-noise (SNR) regimes. 相似文献
14.
15.
Rong Li Pooi Yuen Kam 《Communications, IEEE Transactions on》2007,55(10):1940-1950
We propose the generalized quadratic receivers (GQRs) for unitary space-time modulation over flat Rayleigh fading channels. The GQRs realize the performance improvement potential, known to be approximately 2-4 dB, between the quadratic receiver (QR) and the coherent receiver (CR), by performing channel estimation without the help of additional training signals that consume additional bandwidth. They are designed for various unitary space-time constellations (USTC) in which signal matrices may or may not contain explicit inherent training blocks, and may be orthogonal or nonorthogonal to one another. As the channel memory span exploited for channel estimation increases, the error probability of the GQRs reduces from that of the QR to that of the CR. The GQRs work well for both slow and fast fading channels, and the performance improvement increases as the channel fade rate decreases. For a class of USTC with the orthogonal design structure, the GQR is simplified to a form whose complexity can be less than the complexity of the QR or even that of the simplified form of the QR. 相似文献
16.
17.
18.
Kan Zheng Hang Long Ling Wang Wenbo Wang Young-Il Kim 《Vehicular Technology, IEEE Transactions on》2009,58(4):1816-1822
Multiple-input-multiple-output (MIMO) technology can efficiently increase the system capacity in rich scattering environments without increasing the bandwidth or transmission power. The precoder for MIMO transmission is a processing technique that exploits the channel state information (CSI) by operating on the signal before transmission to effectively improve link performance. A hybrid automatic repeat request (HARQ) scheme can be incorporated with the linear precoder to ensure highly reliable communication. To fully utilize the type-I HARQ diversity gain, particularly in slow-fading channels, we propose the optimal design principle of linear precoders whose column vectors are correspondingly orthogonal to each other. In addition, the practical solution based on codebook is given in this paper. Finally, simulation results demonstrate the effectiveness of the proposed precoders in reducing the detection of bit error rate (BER) and in improving normalized throughput. 相似文献
19.
Huiyong Liao Xiang-Gen Xia 《IEEE transactions on information theory / Professional Technical Group on Information Theory》2007,53(8):2898-2908
In this correspondence, we first present a transformation technique to improve the normalized diversity product for a full rate algebraic space-time block code (STBC) by balancing the signal mean powers at different transmit antennas. After rewriting a cyclic division algebra structure into a multilayer structure for a full rate code, we show that the normalized diversity product of the transformed code with the multilayer structure is better than the one of the transformed code with the cyclic division algebra structure. We then present a new full rate algebraic STBC with multilayer structure with nonvanishing determinant (NVD) for three transmit antennas when signal constellation is carved from QAM. We show that the new code has larger normalized diversity product than the existing 3 times 3 NVD full rate STBC for quadrature amplitude modulation (QAM) signals, and we also show that it has the largest normalized diversity product in a family of full rate STBC. 相似文献
20.
Abou-Khousa M. Ghrayeb A. El-Tarhuni M. 《Vehicular Technology, IEEE Transactions on》2008,57(1):146-156
Space-time spreading (STS) is an appealing open-loop transmit diversity scheme, which has recently been included into the cdma2000 standard. It has been shown that the performance of the STS scheme is highly sensitive to fading coefficient estimation errors, particularly when the channel is highly time dispersive. In practical systems, channel estimation is normally performed after the multipath components are resolved, which suggests that improving multipath detection reduces such estimation errors. Motivated by this, we address, in this paper, the problem of multipath detection in STS-based code division multiple access (CDMA) systems. We first extend the conventional energy-based multipath detection scheme (EMDS) to cope with the spatial channel structure. We derive approximate expressions for the probability of detection and probability of false alarm. It is shown that the errors produced by the conventional scheme in detecting the potential multipath components severely impact the performance of the receiver. To improve upon the EMDS, we introduce and analyze an improved multipath detection scheme (IMDS) based on the estimation of the interference power in the individual resolved multipath components. The efficacy of the proposed scheme stems from the fact that the interference in each potential path is estimated and subtracted before that path is detected. We also present a simple and realizable version of the proposed IMDS detection scheme. Our results show that the proposed scheme not only improves the bit-error-rate performance significantly but also utilizes the pilot power much more efficiently. 相似文献