首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
A previous measurement showed that mass loss from collodion supported by thin carbon films was linear with electron exposure at liquid helium temperature. No other organic solid had shown a linear loss of mass at any temperature. When measurements of collodion were done using titanium supports, the loss of mass proceeded exponentially with exposure at liquid helium temperature. This result suggested that the differing electrical conductivities of these substrates might be the cause of the different mass loss effects. Carbon films, which are typically used at ambient temperatures, have much lower electrical conductivity at very low temperature than titanium films. This suggested that specimen preparation materials and techniques used routinely for room temperature studies may need to be modified when microscopy is done using superconducting objective lenses. For both substrates, the rate of mass loss is slowest at liquid helium temperature.  相似文献   

2.
Water can be a substantial proportion of the residual gas in modern electron microscopes even when frozen hydrated specimens are not used. During measurements of the mass thickness of thin collodion film specimens at low temperatures, it was found that a volatile surface layer (condensed water) modified the apparent rate of mass loss induced by radiation exposure. Mass loss can be enhanced by the presence of water (specimen “etching”), or mass loss can be masked by the dynamic adsorption of water to the specimen surface. The microscope or the grid can be a secondary source of the water; even with cold anticontaminator plates in the vicinity of the specimen, water can be desorbed by x-rays or backscattered electrons. In one typical situation, the mass loss rate appears reduced (due to water adsorption), but the ultimate damage is greater (due to etching). These results illustrate that care must be taken in interpreting mass thickness measurements made in the presence of water and that the lowest stage temperature does not necessarily produce the best observation conditions for all specimens.  相似文献   

3.
As is well known, electron energy loss spectroscopy can be used to determine the relative sample thickness in the electron microscope. This paper considers how such measurements can be applied to biological samples in order to obtain the mass thickness for quantitative X-ray microanalysis. The important quantity in estimating the mass thickness from an unknown sample is the total inelastic cross section per unit mass. Models for the cross section suggest that this quantity is constant to within ±20% for most biological compounds. This is comparable with the approximation made in the continuum method for measuring mass thickness. The linearity of the energy loss technique is established by some measurements on evaporated films and quantitation is demonstrated by measurements on thin calcium standards. A significant advantage of the method is that the energy loss spectrum can be recorded at very low dose, so that mass thickness determination can be made before even the most sensitive samples suffer damage resulting in mass loss. The energy loss measurements avoid the necessity to correct the continuum measurement for stray radiation produced in the vicinity of the sample holder. Unlike the continuum method the energy loss technique requires uniform mass thickness across the probe area, but this is not usually a problem when small probes (<100 nm diameter) are used.  相似文献   

4.
The interpretation of highly resolved elemental maps is not straightforward: one has to consider the quantum mechanical nature of the scattering process as well as the influence of the microscope. Existing calculations of the contrast in elemental maps are based on a non-relativistic approach, while in most of the currently installed electron microscopes, the electrons penetrate the specimen with relativistic energies ≥ 200 keV. Therefore, we have recalculated the intensity distribution in elemental maps based on a fully relativistic theory. Using the concept of contrast transfer functions, the simulations account for lens aberrations as well as the defocus. Surprisingly, the results exhibit considerable deviations between the relativistic and non-relativistic calculations even in the region of low acceleration voltages such as 100 kV. These differences increase with increasing acceleration voltage and are strongly dependent on aperture and energy loss. Quantitative simulations and evaluations of highly resolved elemental maps should therefore make use of a fully relativistic theory.  相似文献   

5.
Accurate quantification of the Be content in Be-Ti alloys on a submicrometre scale can be accomplished with electron energy loss spectroscopy in an analytical electron microscope. The three major steps required to ensure the accuracy of the numerical results are analysed. The first step is the choice of the specimen thickness which should be such that the influence of the specimen surface effects can be ignored yet thin enough so that deconvolution of the spectra is unnecessary. The second step is the background extrapolation under the ionization edge of interest. In this study, a direct least-squares fit with a progressive weighting is used to avoid the drawbacks of the conventional linear least-squares fit. The third step is the calibration of the partial ionization cross-section ratio with the use of a standard specimen. Without this calibration step, the error in the final microanalysis result could be excessive, as demonstrated. With all these precautions taken into consideration, we are able to show that the intermetallic phase TiBe12 exhibits a great deviation from its nominal stoichiometry.  相似文献   

6.
A physical approach is used to analyse the various mechanisms induced by the absorption of X-ray photons of energies in the 0.2–20 keV range. At the atomic scale, besides the (Auger and photo) electron transport in the bulk or the ejection into the surrounding media, special attention is devoted to the specific consequences of the initial Auger decay mechanism. At the macroscopic scale, the decisive role of the poor electronic conductivity of the radiation-sensitive materials is outlined and it is shown that the damaging effects occur in irradiated insulators because the lack of conduction electrons prevents the initial charge of the excited atoms being quickly restored. Correlating irradiation conditions and physical properties of the specimen, various expressions are proposed for the first time to quantify these effects. Some are neither dose- nor dose-rate-dependent and the influence of the surrounding medium is also considered. The fundamental mechanisms investigated here hold for a wide variety of specimens or components investigated in X-ray microscopy. Their consequences can be easily transposed to other techniques using transmitted X-rays.  相似文献   

7.
Determining the bonding environment at a rough interface, using for example the near-edge fine structure in electron energy loss spectroscopy (EELS), is problematic since the measurement contains information from the interface and surrounding matrix phase. Here we present a novel analytical method for determining the interfacial EELS difference spectrum (with respect to the matrix phase) from a rough interface of unknown geometry, which, unlike multiple linear least squares (MLLS) fitting, does not require the use of reference spectra from suitable standards. The method is based on analysing a series of EELS spectra with variable interface to matrix volume fraction and, as an example, is applied to a TiN/poly-Si interface containing oxygen in a HfO2-based, high-k dielectric gate stack. A silicon oxynitride layer was detected at the interface consistent with previous results based on MLLS fitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号