首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polystyrene (PS) and polyethylene (PE), along with their reactive counterparts, i.e., polystyrene having oxazoline reactive groups (OPS) and polyethylene with carboxylic acid groups (CPE), were melt blended in a Rheomix mixer. These blends were prepared by mixing these polymers in various proportions under a variety of conditions. In an alternate procedure the OPS, CPE graft polymer (OPS-g-CPE) was prepared by melt blending these two polymers beforehand, and subsequently this grafted polymer was used as a compatibilizer for PS–PE blends. The effects of the addition of OPS and CPE, on the one hand, and OPS-g-CPE, on the other hand, on the compatibility of PS–PE blends were investigated. The morphology of these blends was examined with a scanning electron microscope (SEM) and related to their tensile properties. The PS–PE blends are found to have the typical coarse morphology of incompatible blends and poor tensile properties while their reactive counterparts, OPS-CPE blends, have fine grain microstructure and show improved tensile strength throughout the range and improved elongation in the PE-rich blends. Relatively low concentrations of the reactive pair, oxazoline and carboxylic acid, are shown to be necessary to produce improved compatibility. The preblended graft copolymer OPS-g-CPE imparts compatibility to PS–PE blends also but not as effectively. This suggests that the addition of OPS and CPE during melt mixing of PS and PE forms OPS-g-CPE polymer at the interface and that these ingredients act as “in situ reactive compatibilizers” which improve physical properties.  相似文献   

2.
Previous publications have shown that the stress-strain behavior, especially ductility, of some incompatible polymer blends are greatly improved by the addition of slurry produced chlorinated polyethylenes (CPE). This improvement is greatest for blends containing polyethylene and PVC. The most effective CPE's have some residual polyethylene crystallinity and may be described as block-like polymers with ethylene sequences and chlorine containing sequences. It is postulated that CPE addition improves the blend properties by increasing the adhesion between domains in the blend via interactions with the blend components. This hypothesis was explored by thermal analysis, dynamic mechanical testing, adhesion studies, and microscopy. It is concluded that the interaction of CPE with polyethylene derives from compatibility of rather long methylene sequences in CPE with the polyethylene which results in good adhesive bonding. The interaction of CPE with PVC may not be owing to segmental compatibility but simply good mutual adhesion between similar polar materials. There is no interaction or adhesion between CPE and polystyrene as would be expected. CPE addition to blends is accompanied by a decrease in component domain size. The relationship between CPE structure and its effectiveness as a blend modifier is discussed.  相似文献   

3.
Poly(vinyl chloride) (PVC), PVC/chlorinated polyethylene (CPE), PVC/oxidized polyethylene (OPE), and PVC/CPE/OPE compounds were prepared in a Haake torque rheometer at various temperatures, rotor speeds, and totalized torques (TTQ). The fusion characteristics of these PVC compounds (fusion time, fusion torque, and fusion temperature) were studied. Longer fusion time results in higher fusion temperature. Higher fusion temperature results in lower fusion torque. The fusion time of PVC/OPE compounds is the longest among these PVC blends. However, the fusion time of PVC/CPE/OPE compounds is the shortest among these PVC blends. The fusion time of the PVC/CPE/OPE compound is significantly different from those of PVC, PVC/OPE, and PVC/CPE compounds at the medium starting temperature and the medium rotor speed. Scanning electron microscopy (SEM) analyses successfully revealed the surface morphological changes of the fusion of PVC, PVC/OPE, PVC/CPE, and PVC/CPE/OPE compounds. The lubrication mechanisms of these PVC compounds have also been postulated. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Acrylonitrile-butadiene rubber having carboxylic acid groups (XNBR) and polystyrene having oxazoline groups, were melt blended in a Rheomix mixer under optimized conditions, The ratio of rubber to polystyrene phase was kept constant at 1:4 by weight. The concentration of the reactive oxazoline groups in the polystyrene phase was varied by mixing polystyrene (PS) with a copolymer of styrene and vinyl oxazoline (OPS). A torque rise observed during blending was found to be related to the concentration of oxazoline-carboxylic acid pairs. This torque rise, and independently measured increases in viscosity, both indicate inter-polymer crosslinkihg. Scanning electron microscopy was used to observe the morphology of the blends. Improved rubber phase dispersion was observed with increasing oxazoline concentration. Instrumented impact strength measurements were made using an unnotched Charpy technique. The plastic yielding was then quantified with the use of a ductility ratio. The impact strengths and ductility of the reactive blends are found to be up to 73% greater than those of the corresponding non-reactive blends. Increasing the OPS concentration beyond 5% results in decreasing impact strength, for as the compatibility increases, the rubber particle size decreases below an effective size for rubber toughening. Similar impact improvement is observed when the major PS phase is substituted with high impact polystyrene (HIPS) containing some OPS.  相似文献   

5.
The effect of the blend ratio on the thermal, morphological, and physicomechanical properties of (chlorinated polyethylene rubber)/(chloroprene rubber) (CPE/CR) blends was studied. Two distinct glass transition temperatures (Tg) of all blends were observed in differential scanning calorimetry curves, falling between the Tg of the two pure rubbers. Analysis of the blends by scanning electron microscopy showed both dispersed and continuous phase morphology that depended on the blend composition. Thermogravimetric analysis showed that all the compounds underwent two stages of thermal degradation. The Mooney viscosity and optimum cure times increased with the increase in CPE contents, whereas the scorch times decreased. The tensile strength and elongation at break decreased, whereas the 100% modulus, hardness, and compression set increased with the increase of CPE content; the tear strength had the lowest value for the 50/50 CPE/CR blend because of the poor miscibility. The results from thermal aging and oil resistance tests showed that pure CPE possessed better thermal aging property and oil resistance than those of pure CR. Thus, considerable improvement in oil resistance of the blend compounds was achieved with the increase of CPE content. J. VINYL ADDIT. TECHNOL., 21:18–23, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Blends of poly(vinyl chloride) (PVC) with different ratios of chlorinated polyethylene (CPE) were degradated by the thermogravimetric method under dynamic conditions (50–600°C) in an inert atmosphere. The effect of the miscibility and composition of the PVC/CPE blends on the thermal stability were investigated. DSC curves of the blends show neither a shift of the PVC glass transition temperature nor a shift of the CPE melting temperature, which means that these blends are heterogeneous. The characteristics of the TG curves were determined, some of which (T1%,T5%, Δm1) can be used as indicators of the thermal stability of the blend. The apparent activation energy of PVC dehydrochlorination in the blends was also calculated. Comparison of the experimental TG curves and TG curves predicted by the additivity rule indicates the existence of the components' interaction in the PVC/CPE blends. The addition of CPE improves the thermal stability of PVC for all the investigated blends in the temperature range where αcalc is greater than αexp. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 166–172, 2000  相似文献   

7.
The dynamic properties, curing characteristics, and swelling behavior of the blends cured using two types of vulcanization systems [i.e., conventional vulcanization (CV) and semiefficient vulcanization (semi-EV)] were investigated. Results indicate that the maximum elastic torque (S′ @MH) and the torque difference, S′ @MH–S′ @ML (maximum elastic torque minus minimum elastic torque) increased with the increasing epoxidized natural rubber (ENR) composition in the blend. However, a reverse trend was observed for tan δ @MH and viscous torque (S″ @MH). At a similar blend ratio, the CV system gives a higher S′ @MH and torque difference but a lower tan δ @MH and S″ @MH than the semi-EV system. The scorch time, t 2 and cure time, t 90, decreased with increasing ENR composition in the blends. Semi-EV system blends exhibit shorter t 2 and t 90 than CV system blends. The swelling degree decreased with increasing ENR composition in the blends and the CV system blends show better oil-swelling resistance.  相似文献   

8.
Mixing torque, morphology, tensile properties and swelling studies of natural rubber/ethylene vinyl acetate copolymer blends were studied. Two series of unvulcanized blends, natural rubber/ethylene vinyl acetate (SMRL/EVA) copolymer blend and epoxidized natural rubber (50% epoxidation)/ethylene vinyl acetate (ENR-50/EVA) copolymer blend were prepared. Blends were prepared using a laboratory internal mixer, Haake Rheomix polydrive with rotor speed of 50 rpm at 120°C. Results indicated that mixing torque value and stabilization torque value in ENR-50 blends are lower than SMRL blends. The process efficiency of ENR-50/EVA blends is better due to less viscous nature of the blend compared to SMRL/EVA blends as indicated in stabilization torque graph. Tensile properties like tensile strength, M100 (modulus at 100% elongation) and E b (elongation at break) increase with increasing EVA fraction in the blend. At the similar blend composition, ENR-50 blend shows better tensile properties than SMRL blends. In oil resistance test, swelling percentage increased with immersion time and rubber composition. At a similar immersion time, ENR-50 blends exhibit better oil resistance compared to SMRL blends. Scanning electron microscopy (SEM) of tensile fractured surface indicated that EVA/ENR-50 blends need higher energy to cause catastrophic failure compared to EVA/SMRL blends. In etched cryogenically fractured surface, size and distribution of holes due to extraction of rubber phase by methyl ethyl ketone (MEK) were studied and holes became bigger as rubber composition increased due to coalescence of rubber particle.  相似文献   

9.
In this article, we discuss the effect of a compatibilizer for binary blends on the properties of ternary blends composed of high‐density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) and poly(vinyl chloride) (PVC) virgin polymers with a simulated waste plastics fraction. Chlorinated polyethylene (CPE), ethylene–propylene rubber (EPR), and their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PP/PVC ternary blend. CPE, styrene‐ethylene‐propylene block copolymer (SEP), or their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PS/PVC ternary blend. The composition of the ternary blends were fixed at 8/1/1 by weight ratio. The amount of the compatibilizer was 3 phr. Rheological, mechanical, and thermal properties were measured. For the 8/1/1 HDPE/PP/PVC ternary blends, the tensile strength was slightly decreased, but the impact strength was significantly increased by adding EPR, CPE, or their mixture. EPR exhibited the most significant impact modification effect for the ternary blends. In a similar way, for 8/1/1 HDPE/PS/PVC ternary blends, on adding SEP, CPE, or their mixture, the tensile strength was slightly decreased, but the impact strength was noticeably increased. It was found that the SEP worked much better as an impact modifier for the ternary blends than CPE or the SEP/CPE mixture did. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1048–1053, 2000  相似文献   

10.
The effect of chlorinated polyethylene (CPE) content and test temperature on the notched Izod impact strength and brittle‐ductile transition behaviors for polyvinylchloride (PVC)/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites is studied. The CPE content and the test temperature regions are from 0–50 phr and 243–363 K, respectively. It is found that the optimum nano‐CaCO3 content is 15 phr for PVC/CPE/nano‐CaCO3 ternary composites. For both PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites, the impact strength is improved remarkably when the CPE content or test temperature is higher than the critical value, that is, brittle‐ductile transition content (CBD) or brittle‐ductile transition temperature (TBD). The TBD is closely related to the CPE content, the higher the CPE content, the lower the TBD. The temperature dependence of impact strength for PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites can be well simulated with a logistic fitting model, and the simulation results can be illustrated with the percolation model proposed by Wu and Jiang. DMA results reveal that both PVC and CPE can affect the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. When the CPE content is enough (20 phr), the CPE is more important than PVC for determining the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. Scanning electron microscopy (SEM) observations reveal that the impact fractured mechanism can change from brittle to ductile with increasing test temperature for these PVC systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
The preparation and characterization of styrene–low-density polyethylene graft copolymers for addition to blends of polyethylene and polystyrene to improve blend mechanical properties is described. The direct method of grafting with 60Co radiation was employed using the polyethylene in pellet form. This approach gave good grafting efficiency with maximum yields limited to about 1 g of styrene reacted per gram of polyethylene. Excessive crosslinking at radiation doses beyond about 1 mrad was detrimental to the melt processibility of the graft. Crystallinity, dynamic mechanical properties, morphology, and stress–strain behavior of the grafts were examined and compared with melt blends of similar composition in order to better characterize the material produced.  相似文献   

12.
Poly(vinyl chloride) (PVC)/chlorinated polyethylene (CPE)/oxidized polyethylene (OPE) blends were prepared in a Haake torque rheometer at various temperatures, rotor speeds, and totalized torques. A 23 factorial experimental design was applied to study the main two-factor interaction, and three-factor interaction effects of temperature, rotor speed, and totalized torque on the heat of fusion of PVC/CPE/OPE blends, which were examined using differential scanning calorimetry. The sequence of the main effects on the heat of fusion of PVC/CPE/OPE blends, in ascending order, is temperature < rotor speed < totalized torque. The sequence of the two-factor interaction effects on the heat of fusion of PVC/CPE/OPE blends, in ascending order, is temperature vs rotor speed < temperature vs totalized torque < rotor speed vs totalized torque. The three-factor interaction effect is not significantly related to the heat of fusion of PVC/CPE/OPE blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2755–2761, 1999  相似文献   

13.
Polycarbonate with anhydride end groups (PC‐anh) was prepared by the reaction between polycarbonate having hydroxyl end groups (PC‐OH) and trimellitic anhydride chloride (TMAC). Hydroxyl or anhydride terminated polycarbonates were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The reaction of PC‐anh with polystyrene containing oxazoline reactive groups (RPS) was confirmed not only by the torque measurement during melt blending of these two but also by FTIR spectroscopy of the reactive blend obtained. Polycarbonate (PC) / polystyrene (PS) compatibilized blends were prepared by melt blending along with their reactive counterparts, PC‐anh and RPS in the Haake mixer. The morphologies of these blends were examined by the scanning electron microscope (SEM). The compatibilized blends with reactive components showed relatively finer morphologies than the uncompatibilized blend without reactive components. Izod impact strength and rheological property of these blends were also investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1338–1347, 2000  相似文献   

14.
This paper discusses process development, tensile properties, morphology, oil resistance, gel content, and thermal properties of polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) vulcanized blends with the addition of N,N-m-phenylenebismaleimide (HVA-2) as a compatibilizer. Blends were prepared in several blend ratios in a Haake Polydrive with temperature and rotor speed of 180°C and 50 rpm, respectively. Results indicated that the combination of dicumyl peroxide (Dicup) with HVA-2 shows high torque development and stabilization torque as compared to the blend with Dicup vulcanization alone. In terms of tensile properties, the combination of Dicup with HVA-2 shows higher tensile strength, tensile modulus (M100), elongation at break, oil resistance, and gel content in all blend ratios compared to similar vulcanized blends with Dicup without HVA-2 addition. Scanning electron microscope (SEM) micrographs of the blends support that the cross-linking and compatibilization occur during the process of the vulcanized blend containing HVA-2. In the case of crystallinity of the blends, the addition of HVA-2 in Dicup vulcanized blend revealed a tendency for the percentage of crystallinity (Xc) to decrease. The addition of HVA-2 in Dicup vulcanization also produced blends with good thermal stability dealing with the so-called coagent bridge formation.  相似文献   

15.
Criteria for rheological compatibility of polymer blends are suggested. The criteria suggested make use of plots of first normal stress difference (N1) against shear stress (σ12), and of storage modulus (G′) against loss modulus (G″). Compatible blend systems considered are (1) blends of two different grades of low-density polyethylene, (2) blends of poly(vinylidene fluoride) and poly(methyl methacrylate), (3) blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene, and (4) blends of poly(styrene-co-acrylonitrile) and poly(styrene-co-maleic anhyride). And incompatible blend systems considered are (1) blends of nylon 6 and poly(ethylene-co-vinyl acetate) and (2) blends of nylon 6 and an ethylene-based multifunctional polymer. It has been found that plots of N1 vs. σ12 and G′ vs. G″ give (a) temperature-independent correlations for both compatible and incompatible blend systems; (b) composition-independent correlations for compatible blends; (c) composition-dependent correlations for incompatible blends.  相似文献   

16.
A tetra‐component blend, consisting of low‐density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), was studied as a model system of commingled plastic wastes (LDPE/PVC/PP/PS, mass ratio: 70/10/10/10). Effects of chlorinated polyethylene (CPE), ethylene–propylene–diene monomer (EPDM), styrene–butadiene–styrene (SBS), and their mixture (CPE/EPDM/SBS, mass ratio: 2/2/2) on the mechanical properties and morphology of the system were investigated. With addition of several elastomers and their mixture, the tensile strength of the blends decreased slightly, although both the elongation at break and the impact strength increased. Among these elastomers, EPDM exhibited the most significant impact modification effect for the tetra‐component blends. SBS and the mixture have a good phase‐dispersion effect for the tetra‐component blend. By adding a crosslinking agent [dicumyl peroxide (DCP)], the mechanical properties of the tetra‐component blends also increased. When either SBS or the mixture was added to the blend together with DCP, the probability that the crosslinking agent (DCP) would be at the interface improved because of the phase‐dispersion effect of SBS. Therefore, more co‐crosslinked products will form between LDPE and other components. Accordingly, remarkable improvement of the interfacial adhesion and hence the mechanical properties of the tetra‐component blends occurred. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2947–2952, 2001  相似文献   

17.
The viability of thermomechanical recycling of post‐consumer milk pouches (blend of low‐density polyethylene (LDPE) and linear low‐density polyethylene (LLDPE)) and its scope for suitable engineering applications were investigated. The effects of blending with ethylene‐propylene‐diene monomer (EPDM) rubber and subsequent curing using dicumyl peroxide (DCP) on the macromolecular structure and properties of recycled polyethylene (PE) blends were studied. The crosslinking efficiency of recycled PE/EPDM blends and possible thermooxidative degradation of recycled polymer upon peroxide curing was assessed using torque and gel content measurements along with infrared spectroscopic analysis. Both the torque and gel content of the blends varied with DCP crosslinking reactions and also were affected by oxidative degradation. In view of the electrical application area of this recycled blend material, the dielectric breakdown strength and volume resistivity were measured. The mechanical performance and thermal stability of recycled PE/EPDM blends improved with progressive crosslinking by DCP but deteriorated somewhat at higher DCP dose. Scanning electron microscopy showed good interface bonding between recycled polymer and dispersed EPDM phase in the cured blends compared to the non‐cured blends. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
《国际聚合物材料杂志》2012,61(3-4):149-158
Abstract

Polylauryllactam was used to improve the impact strength of polyvinylchloride (PVC)/chlorinated polyethylene (CPE) blends without sacrificing their tensile properties. The enhancement of the impact strength increased with the increase of the CPE content in the PVC/CPE blends due to the formation of intermolecular hydrogen bonds among PVC, polylauryllactam and CPE macromolecules. A doubled impact strength of the PVC/CPE blend with 20 weight percent of CPE was obtained after the addition of 1.5 phr polylauryllactam. The PVC/CPE blends with polylauryllactam have a better dimensional stability compared with the PVC/CPE blends without the additive, according to their viscoelastic characteristics. Polylauryllactam shortened the processing time to reach a minimum melt viscosity in the processing of the PVC/CPE blends.  相似文献   

19.
The feasibility of inducing beneficial changes to polystyrene/polyethylene (PS/PE) blends via reactive extrusion processes is considered. Experiments have been conducted on 50:50 wt.% PS/PE blends that were treated with different levels of dicumyl peroxide and triallyl isocyanurate coupling agent. Both a low molecular weight and a high molecular weight blend series have been investigated. A “more reactive” polystyrene was synthesized by incorporation of a minor amount of ortho-vinylbenzaldehyde. Blends containing this modified polystyrene were subjected to identical processing' conditions on a counter-rotating twin screw extruder. Examination of the tensile properties of the extrusion products suggested that a judicious level of peroxide and coupling agent additives would be beneficial to the ultimate physical properties. The quantity of styrenic phase becoming chemically grafted to the polyethylene matrix was influenced most strongly by the level of the chosen coupling agent. As determined by scanning electron microscopy, the phase morphologies of the tensile test fracture surfaces were strongly dependent upon the reaction extrusion process; those extruded blends that had been exposed to the additive pre-treatment displayed substantially finer microstructure. The enthalpy of fusion of the polyethylene melting endotherm was likewise influenced by both the presence or absence of the additives as well as the molecular weight nature of the blend series.  相似文献   

20.
Recycling of waste plastics as a blend of generic types is attractive since a difficult separations problem is avoided. However, blends of incompatible polymers are frequently very brittle and cannot be considered for many applications. Additives which modify the blend to give it ductility may provide a solution to this problem. Chlorinated polyethylene (CPE) made by a slurry process has been suggested for this application by Schramm and Blanchard. Further documentation of the effectiveness of this approach is given here. Addition of CPE to such a blend generally increases the elongation at break and the energy to break very dramatically with ordinarily some loss in strength and modulus. This approach works most effectively in blends of high polyethylene and poly(vinyl chloride) content. Three grades of CPE were studied here which revealed that the specific structure of the CPE molecule is a factor. The effectiveness of CPE for blend modification is believed to derive from the graded molecular structure acquired during chlorination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号