首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mass transfer characteristics of liquid-liquid (horizontal) pipeline contactors were studied for the bubble and plug flow regimes. The contactors were operated co-currently. The theory of mass transfer with chemical reaction was used to obtain values of physical mass transfer coefficient (kLa) and effective interfacial area (a) for a number of systems. In all the experiments the resistance to mass transfer was confined to the continuous phase. The effect of the flow rates and viscosities of the two phases, interfacial tension, contactor length, pipe diameter, the presence of solids, etc. on both, kLa and a was studied. The values of kLa and a were found to vary from 1 to 50 × 10?3 sec?1, and 0.4 to 25 cm?1, respectively.  相似文献   

2.
One of the main challenges in the treatment of polycyclic aromatic hydrocarbons (PAHs) in controlled bioreactors is the hydrophobicity and low solubility of these compounds in the aqueous phase, resulting in appreciable mass transfer limitations within the bioreactor. To address this challenge, we have developed a modified roller bioreactor (Bead Mill Bioreactor) in which inert particles are used to improve mass transfer from the solid phase to the aqueous phase. Experimental results with naphthalene as a model PAH and Pseudomonas putida as a candidate bacterium indicate that both the mass transfer rate from the solid phase to liquid phase and the biodegradation rate in the Bead Mill Bioreactor (BMB) were significantly higher than those in a conventional roller bioreactor (20‐fold and 5.5‐fold, respectively). The enhancement of mass transfer was dependent on the type, size and volumetric loading of the inert particles, as well as concentration of particulate naphthalene. The highest mass transfer coefficient (kLa = 2.1 h?1) was achieved with 3 mm glass beads at a volumetric loading of 50% (particle volume/working volume) with 10 000 mg dm?3 particulate naphthalene. The maximum biodegradation rate of naphthalene attained in the bead mill bioreactor (59.2 mg dm?3 h?1 based on the working volume and 118.4 mg dm?3 h?1 based on the liquid volume) surpasses most other rates published in the literature and is equivalent to values reported for more complex bioreaction systems. The bead mill bioreactor developed in the present work not only enjoys a simple design but shows excellent performance for treatment of PAHs suspended in an aqueous phase. This fundamental information will be of significant value for future studies involving soil‐bound PAHs. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
The fractional dispersed phase hold-up and mass transfer coefficients were measured in modified spray columns of 50 mm i.d. using an aqueous two phase system of polyethylene glycol (PEG 4000)-sodium sulphate-buffer. The mass transfer coefficients were measured for amyloglucosidase and β-galactosidase. Both co-current and countercurrent modes of operation were investigated. The dispersed phase hold-up (?D) and the dispersed phase and the continuous phase mass transfer coefficients (kDa, kCa) increased with increasing dispersed phase velocity. An increase in the phase concentration of sodium sulphate and PEG was found to reduce ?D, kDa, and kCa. The performance of the modified spray column is compared with the conventional spray column. The modifications resulted into about a ten-fold enhancement in the throughput and about a five-fold reduction in the value of the height of a transfer unit (HTU ). It has been shown that the value of HTU of the order of 1 m can be obtained. Empirical correlations for ?D and kDa, kCa have been proposed.  相似文献   

4.
The gas–liquid interfacial area and mass transfer coefficient for absorption of oxygen from air into water, aqueous glycerol solutions up to 1.5% (w/w) and fermentation medium containing glucose up to a 3% concentration were determined in a co‐current down flow contacting column (CDCC; 0.05 m i.d. and 0.8 m length). Experimental studies were conducted using various nozzle diameters at different gas and re‐circulation liquid rates. Specific interfacial area (a) is determined from the fractional gas hold‐up (εG) and the average bubble diameter (db). Once the interfacial area is determined, the volumetric mass transfer coefficient (kLa) is then used to evaluate the film mass transfer coefficient in the CDCC. The effects of operating conditions and liquid properties on the specific interfacial area were investigated. The values of interfacial area in air–aqueous glycerol solutions and fermentation media were found to be lower than those in the air–water system. As far as experimental conditions were concerned, the values of interfacial area obtained from this study were found to be considerably higher than those of the literature values of conventional bubble columns. The penetration theory is used to interpret the film mass transfer coefficient and results match the experimental kL data reasonably well. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
The overall apparent volumetric gas—liquid mass transfer coefficient (k95a) and the mixing time (t95) were determined in a 240 dm3 vortex aerated fermenter over stirrer speed and air flow ranges of 300–800 rpm and 10–45 normal dm3 min?1, respectively. The mass transfer data obtained in an aqueous salt solution (2.5 kg m?3 NaCl in water) compared well with the measurements in a fermentation medium used in culture of certain microaerophilic bacteria. Over the ranges examined, the gas-liquid mass transfer coefficient depended only on air flow rate; the dependence was linear with flow. Mixing time declined with increasing agitation according to a power-law relationship. The mixing and mass transfer characteristics of the vortex aerated system were compared with that of a ‘standard’ stirred tank fermenter (27 dm3). The mixing time variations with respect to agitation rate were remarkably similar for the two types of fermenters examined.  相似文献   

6.
BACKGROUND: The pentitol D‐arabitol has been produced from D‐glucose utilizing osmophilic yeast strains, however, there are remarkably few reports available on the production of D‐arabitol from lactose. Previous studies in the laboratory have shown that the osmophilic yeast Kluyveromyces lactis NBRC 1903 can convert lactose to extracellular D‐arabitol without extracellular accumulation of D‐glucose or D‐galactose. The present study was undertaken to determine the participation of aeration on the D‐arabitol synthesis in K. lactis NBRC 1903. RESULTS: The highest D‐arabitol concentration of 91.7 mmol L?1 was achieved after 120 h cultivation in medium containing 555 mmol L?1 of lactose with initial volumetric liquid‐phase mass transfer coefficient of oxygen (kLa)0 of 85.5 h?1. The fractional yield of D‐arabitol was affected by not only aeration but also growth phase. The highest fractional yield of D‐arabitol in terms of lactose consumption was 0.255 that was obtained at stationary phase with (kLa)0 of 85.5 h?1. CONCLUSION: It was found that oxygen supply is a key factor in the production of D‐arabitol. Patterns of metabolism were classified according to the level of oxygen supply and the growth phase. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Gas-liquid volumetric mass transfer coefficients, (kLa), have been obtained for “dead-end” autoclave reactors operated in two different modes: (a) gas introduced into the gas phase, and (b) gas introduced through a dip-tube in the liquid. Three different methods of kLa determination have been compared. Effects of agitation speed, impeller diameter, gas to liquid volume ratio (Vg/VL), position of the impeller and reactor size on kLa have been investigated. The kLa data were found to be correlated as: kLa = 1.48 × 10?3 (N)2.18 (Vg/VL)1.88 (dI/dT)2.16 (h1/h2)1.16 The critical speed of surface breakage, at which transition from the surface convection to the surface entrainment regime occurs, was also determined for different impeller positions, impeller diameters and gas to liquid volume ratios.  相似文献   

8.
The Cocurrent Downflow Contactor (CDC) has been developed as a mass transfer and reactor device, with and without addition of tangential (swirl) flow, giving gas hold-up (Eg) values of 0.5–0.75, interfacial areas in the range 1000–6000 m2m?3 liquid and kLa values in the range of 0.15–1.55 s?1 for absorption using the O2/H2O system. It has been studied as a catalytic slurry reactor for the hydrogenation of (i) itaconic acid and (ii) triglycerides catalysed by Pd and Ni catalysts. The reactions were observed to be largely surface-reaction rate controlled, due to the very efficient mass transfer (kLa up to 11.75 s?1 under reaction conditions) and application of swirl flow-enhanced reaction rates. The CDC has recently been found to be capable of operating as a fixed bed reactor, thus eliminating a downstream catalyst separation problem (therefore more cost effective), and is superior in its mass transfer characteristics to other known devices. Scale-up can be undertaken without loss of performance efficiency.  相似文献   

9.
BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work. RESULTS: The data indicate that the rate constant (kao) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10?1.70. The activation energy (Ea) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (Cmin) is lower than 10?5 mol L?1. CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: ? d[Ce(IV)]/dt = 10?1.70[Ce(IV)] [(RNH3)2SO4]1.376. The rate‐controlling step has been evaluated from analysis of the experimental results. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
A perfluorocarbon (PFC), namely perfluorodecalin, was added to fermentation medium to increase the medium's oxygen solubility. The antibiotic concentration obtained in the absence of PFC was 45 mg dm?3, whereas it was 90 mg dm?3 in the presence of 10% (v/v) PFC. On the other hand, biomass concentration decreased from 5.7 kg m?3 to 2.9 kg m?3 by adding 10% PFC. The use of PFC in the fermentation medium also reduced the formation of mycelial pellets. The values of the mass transfer coefficient, kLa, measured in the medium with PFC were found to be in the range of 122–175 h?1 during the active growth phase which were two to three times higher than those in the medium containing no PFC. Furthermore, the maximum oxygen uptake rates obtained at the stationary phase with and without PFC were 7 mmol dm?3 h?1 and 4.9 mmol dm?3 h?1, respectively. The actual effect of PFC on actinorhodin fermentation was demonstrated by applying different operational strategies to the system. © 2001 Society of Chemical Industry  相似文献   

11.
Effective interfacial area a and volumetric liquid-side mass transfer coefficient kLa of an RTL contactor were obtained at different stirring speeds by absorption of oxygen from air into 0.8 kmol/m3 sodium sulphite solution, in the presence of Co++ ions. The values of a and kLa ranged from 80 to 150 m2/m3 and 0.0003 to 0.00053 s?1, respectively, when stirrer speed was increased from 8 to 40 rpm. When kL alone was evaluated, it was found to be practically constant, irrespective of stirring speed.  相似文献   

12.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kL a . The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kL a in the downflow bubble column. Correlations for a and kL a for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

13.
In this work, the gas‐liquid mass transfer in a lab‐scale fibrous bed reactor with liquid recycle was studied. The volumetric gas‐liquid mass transfer coefficient, kLa, is determined over a range of the superficial liquid velocity (0.0042–0.0126 m.s–1), gas velocity (0.006–0.021 m.s–1), surface tension (35–72 mN/m), and viscosity (1–6 mPa.s). Increasing fluid velocities and viscosity, and decreasing interfacial tension, the volumetric oxygen transfer coefficient increased. In contrast to the case of co‐current flow, the effect of gas superficial velocity was found to be more significant than the liquid superficial velocity. This behavior is explained by variation of the coalescing gas fraction and the reduction in bubble size. A correlation for kLa is proposed. The predicted values deviate within ± 15 % from the experimental values, thus, implying that the equation can be used to predict gas‐liquid mass transfer rates in fibrous bed recycle bioreactors.  相似文献   

14.
The main objective of this work was to propose a new process for household fume incineration treatment: the droplet column. A feature of this upward gas‐liquid reactor which makes it original, is to use high superficial gas velocities (13 m s–1) which allow acid gas scrubbing at low energy costs. Tests were conducted to characterize the hydrodynamics, mass transfer performances, and acid gas scrubbing under various conditions of superficial gas velocity (from 10.0 to 12.0 m s–1) and superficial liquid velocity (from 9.4·10–3 to 18.9·10–3 m s–1). The following parameters characterized the hydrodynamics: pressure drops, liquid hold‐ups, and liquid residence time distribution were identified and investigated with respect to flow conditions. To characterize mass transfer in the droplet column, three parameters were determined: the gas‐liquid interfacial area (a), the liquid‐phase volumetric mass transfer coefficient (kLa) and the gas‐phase volumetric mass transfer coefficient (kGa). Gas absorption with chemical reaction methods were applied to evaluate a and kGa, while a physical absorption method was used to estimate kLa. The influence of the gas and liquid velocities on a, kLa, and kGa were investigated. Furthermore, tests were conducted to examine the utility of the droplet column for the acid gas scrubbing, of gases like hydrogen chloride (HCl) and sulfur dioxide (SO2). This is a process of high efficiency and the amount of pollutants in the cleaned air is always much lower than the regulatory European standards imposed on household waste incinerators.  相似文献   

15.
An experimental investigation was made to measure interfacial area, a, and liquid‐side volumetric mass transfer coefficient, kLa, in a downflow bubble column by chemical methods viz., absorbing CO2 in aqueous sodium hydroxide and sodium carbonate/bicarbonate buffer solution respectively. The effect of gas and liquid flowrate and nozzle sizes on a and kLa were investigated. The experimental data obtained in the present system were analyzed and correlations were developed to predict a and kLa in terms of superficial gas velocity. The variation of a and kLa with specific power input were shown in graphical plot and compared with other gas‐liquid systems.  相似文献   

16.
New data of gas-liquid mass transfer for cocurrent downflow through packed beds of non-porous particles are presented. Mass transfer parameters for air/carbon dioxide/water and air/carbon dioxide/sodium hydroxide systems were evaluated by least squares fit of the calculated CO2 concentration profiles in the gas phase to the experimental values. The dependence of kGa on gas and liquid flow rates is caused by the dependence of gas-liquid interfacial area, not by the gas-side mass transfer coefficient kG. In the case of the absorption of dilute carbon dioxide the gas-side resistance is considerably smaller than the liquid-side resistance. In the pulse flow regime, gas-liquid interfacial area calculated from kLa and kL values obtained by physical, respectively, chemical absorption are lower than the gas-liquid interfacial area evaluated from the measurements under reaction conditions.  相似文献   

17.
In a Confined Plunging Liquid Jet Contactor (CPLJC) a jet of liquid is introduced into an enclosed cylindrical column (downcomer) that generates fine gas bubbles that are contacted with the bulk liquid flow. The region where the liquid jet impinges the receiving liquid and expands to the wall of the downcomer is called the Mixing Zone (MZ). In the MZ, the energy of the liquid jet is dissipated by the breakup of the entrained gas into fine bubbles, and the intense recirculation of the two-phase mixture. The study presented here was undertaken to quantify the ozone-water mass transfer performance of the MZ through the determination of the volumetric mass transfer coefficient, kLa (s?1), and to produce a model for predicting kLa based on the specific energy dissipation rate. It was found experimentally that kLa in the MZ increased with increasing superficial gas velocity. A maximum experimental kLa value of 0.84 s?1 was achieved which compares well to other contactors used in water treatment. Such a large kLa value combined with the small volume of the reactor, favorable energy requirements and safety features of the system, suggests that the CPLJC provides an attractive alternative to conventional ozone contactors. The relatively large mass transfer rates were found to be a function of the high gas holdup and fine bubble size generated in the MZ, which results in an almost froth-like consistency. A model based on the specific energy dissipation rate of the water jet, E (kg · m?1· s?3), and MZ bubble size was used to predict kLa in the MZ. Using E, the number average bubble size was predicted which was then used to calculate the liquid phase mass transfer coefficient kL. The bubble size was also used with the predicted mixing zone gas holdup to calculate the specific interfacial area, a (m?1), which was then combined with kL to determine a predicted value of kLa. The average deviation between experimental and predicted kLa was 6.2%.  相似文献   

18.
This study investigated the effect of water type on the rate of CO2 transfer from/to an aqueous phase with varying degree of water salinity. The absorption and desorption experiments were conducted on reverse osmosis product, brackish well, and brackish water reverse osmosis reject waters as well as seawater in a mechanically agitated tank. Results show that the direction of mass transfer has a major impact on the value of the volumetric mass transfer coefficient, kLa, with the absorption experiments always rendering higher values. Furthermore, kLa values always decreased with salinity in both absorption and desorption experiments until a certain critical salinity value was reached, beyond which mass transfer increased again. However, kLa values were found to decrease continuously with an increase in the water alkalinity in absorption experiments, while no clear conclusion could be drawn for the alkalinity effect in the case of desorption experiments. These observations suggest that the effect of alkalinity should be further investigated to elucidate its impact along with the salinity on the volumetric mass transfer rate.  相似文献   

19.
A theoretical analysis is performed employing the film model for the isothermal absorption and self-decomposition of ozone in aqueous solutions with interfacial resistance, which is inversely proportional to the interfacial mass transfer coefficient ks. A closed-form solution has been obtained. The effects of system parameters on the ozone mass transfer rate are examined. These parameters include the interfacial resistance (1/ks), the acidic and basic self-decomposition reaction rate parameters (Mm 0.5, Mn 0.5.; Mm = [2DAkmCAi m-1/(m+1)]/(kL 0)2, Mn=(2DAknCAi n-1/(n+1))/(kL 0)2, the reaction orders (m,n), the pH value of solution, and the liquid-phase mass transfer coefficient (kL 0). The results indicate that the reduction effect of the interfacial resistance on the absorption rate is most significant for the situation with the larger values of Mm and Mn as well as with higher pH values. Also, for any particular finite value of kL 0/ks, the reduction effect encountered is greater for a gas liquid contactor with a lower kL 0. The reduction effect should be avoided in order to maintain a higher mass transfer rate of ozone in aqueous solution. This analysis is of importance for the efficient use of ozone in water/wastewater treatment processes in the presence of interfacial resistance substances such as surface active agents. For some known special cases (for example, cases with no interfacial resistance), the present solution reduces to the previous works of other investigators.  相似文献   

20.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号