首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Currently no specific method exists for the deposition of High Velocity Oxy-Fuel (HVOF) thermal spray functionally graded coatings. This paper investigates the design and optimisation of a multi-powder HVOF thermal spray device in order to deposit aluminium/tool-steel functionally graded coatings. A multi-powder feed device concept was developed. The concept was based on a stand alone two powder chamber device which integrates with common hopper systems to allow the mixing of two powders during thermal spray deposition. This concept was verified by simulation the design of this device for multi-powder flow using Finite Element Analysis (FEA) to arrive at the optimum dual feed design. The FEA model predicted the mixing and flow of two powders of various ratios' of mass flow rate and velocity based on an optimum designed shape and pressure ratios' of nitrogen gas in the chamber to pick-up shaft of 2.25:1. This yielded the best results in terms of carrying the powders from the mixing zone into the nitrogen gas flow path, inside the pick-up shaft and on towards the HVOF gun. Post finite element analysis the device was manufactured for the utilisation within the HVOF process. Optimisation tests of the device included; powder flow bench tests and HVOF thermal spraying of graded deposits. The results revealed a calibration graph for the two powders in question and the compositional variation across the deposit during functionally graded deposition. The composition of the graded deposits were close to that anticipated hence this showed the suitability of the newly designed multi-powder deposition system in mixing two powders for the purpose of producing HVOF graded coatings.  相似文献   

2.
In this paper, effective damage tolerance of a functionally graded coating (FGC) deposited by high velocity oxygen fuel (HVOF) spraying is observed. The thick FGC (≈ 1.2 mm) consists of 6 layers with a stepwise change in composition from 100 vol.% ductile AISI316 stainless steel (bottom layer) to 100 vol.% hard WC-12Co (top layer) deposited onto an AISI316 stainless steel substrate. Damage tolerance is observed via 1) an increase in compliance with depth, and 2) an increase in fracture resistance by containment, arrest and deflection of cracks. A smooth gradation in the composition and hardness through the coating thickness is found by scanning electron microscopy and depth-sensing microindentation, respectively. The in-situ curvature measurement technique reveals that during the deposition of the FGC, compressive stresses exist in the lower, metallic layers owing to peening effect of successive impact, and these gradually evolve to high tensile, in the top layers. Tensile stresses appear to be due to quenching alone; thermal stresses are low because of the gradation. All of this is beneficial for the deposition of a thick coating.The FGC structure shows the ability to reduce cracking with increased compliance in the top layer during static and dynamic normal contact loading, while retaining excellent sliding wear resistance (ball-on-disk tests). Results are discussed in comparison to the behavior and properties of coatings of similar individual compositions and thicknesses, as well as a thick monolithic WC-12Co sprayed coating. Further improvements in the processing are proposed to enhance the adhesion strength and avoid coating delamination under high load contact-fatigue conditions.  相似文献   

3.
Investigation of the residual stresses and microstructural properties associated with HVOF thermal spray coating of WC-17 wt% Co of same thickness on three substrates with coefficients of thermal expansion different to that of WC. The residual stresses were measured by X-ray diffraction sin2ψ techniques using CoKα radiation. The results indicated residual stresses that have different natures for the as-sprayed coatings despite using the same powder as feedstock. The magnitudes of the stresses in the as-sprayed condition are low.  相似文献   

4.
High-velocity oxyfuel (HVOF) sprayed polyimide/WC-Co functionally graded (FGM) coatings with flame-sprayed WC-Co topcoats have been investigated as solutions to improve the solid-particle erosion and oxidation resistance of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines. Porosity, coating thickness, and volume fraction of the WC-Co phase retained in the graded coating architecture were determined using standard metallographic techniques and computer image analysis. The adhesive bond strength of three different types of coatings was evaluated according to ASTM D 4541. Adhesive/cohesive strengths of the FGM coating were measured and compared with those of pure polyimide and polyimide/WC-Co composite coatings and also related to the tensile strength of the uncoated PMC substrate perpendicular to the thickness. The FGM coatings exhibited lower adhesive bond strengths (∼6.2 MPa) than pure polyimide coatings (∼8.4 MPa), and in all cases these values were lower than the tensile strength (∼17.6 MPa) of the reference uncoated PMC substrate. The nature and locus of the failures were characterized according to the percent adhesive and/or cohesive failure, and the interfaces tested and layers involved were analyzed by scanning electron microscopy. The original version of this paper was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.  相似文献   

5.
Coating and layer composite manufacturing most commonly involves high temperature gradients and intensive heat transfer between the different composite materials. This can be noticed not only for thermal spraying, but also for other coating techniques. The combination of temperature gradients and materials with different thermophysical properties leads to the formation of thermal stresses in the composite, which are superimposed by stress generating effects during coating solidification, phase transformation or recrystallization. The final state of residual stresses affects the structural and functional properties of the coating as well as the component reliability during operation. Therefore, residual stress analysis is an important tool for the optimization of coatings and layer composite manufacturing processes in order to ensure stability of the processes, adhesion and compatibility of the coating, and finally, the reliability of the components in various technical systems.The most common residual stress measurement techniques are described and compared, with the focus on the incremental hole drilling and milling method. The advantages and disadvantages of the methods are discussed with respect to their application on industrial machine parts. The typical application fields for the different methods are given with respect to the specific measurement principles. The incremental hole drilling method is presented in more detail with application examples that illustrate the suitability of this method for the optimization of thermal spraying processes in industrial layer composite manufacturing by managing the heat and mass transfer in a most appropriate way.  相似文献   

6.
W/Cu梯度功能材料板稳态热应力分析   总被引:1,自引:1,他引:1  
采用解析法研究了W/Cu梯度功能材料板的残余热应力和在稳态梯度温度场下的工作热应力的大小和分布状况。结果表明:随着成分分布指数的增加,残余热应力与工作热应力的最大值先减小后增大,当成分分布指数(P)取1时,达到最小值;随着梯度层数的增加,热工作热应力的最大值逐渐减小,但当梯度层数达到6时,随着梯度层数的增加,缓和效果并不明显;当梯度层厚度增加到5 mm时,工作热应力的最大值约为非梯度材料工作热应力最大值的50%。  相似文献   

7.
There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.  相似文献   

8.
喷涂工艺参数对硅灰石涂层结构的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等离子喷涂方法,在不同喷涂距离、主气流量和喷涂功率下制备硅灰石涂层.使用扫描电镜观察了涂层的微观形貌,研究了喷涂工艺参数对涂层结构的影响.结果表明,在较大主气流量下,随着喷涂距离增加,涂层粒子扁平化程度降低,涂层内孔隙逐渐增多;在较小主气流量下,涂层粒子扁平化程度随喷涂距离增加呈现先增加后减小的趋势.主气流量增加,涂层致密,粒子扁平充分.喷涂功率增加,粒子熔化好,涂层致密;但随喷涂功率进一步增加,涂层中出现较多的圆形孔隙.喷涂工艺参数对涂层结构的影响主要通过影响熔融粒子的温度和速度所致.  相似文献   

9.
在喷涂复杂形状部件时,喷涂焰流和基体表面几乎不可能固定一个角度。研究喷涂角度对涂层性质的影响是必要的。本文研究凹面曲率半径对沉积率的影响。实验使用团簇烧结的WC-10Co-4Cr粉末(粒径15~45μm)。实验时喷涂参数不变,喷涂半径为10,15,25mm的凹面。研究表明,喷涂角度严重影响涂层沉积率。喷涂角度减小导致沉积率减少。当喷涂角度少于30°.,涂层性质显著降低。涂层沉积分布和不同凹面半径的关系被推导。  相似文献   

10.
The present work has been conducted in order to determine systematically the influence of the spraying distance on the microstructure and mechanical properties of a Colmonoy 88 alloy deposited by means of HVOF thermal spray onto a SAE 1045 steel substrate. The spray distance varied between 380-470 mm and the evaluation of the deposits characteristics and properties was carried out both on their surface and on cross section. Both hardness and elastic modulus of the coatings were determined according to the model of Oliver and Pharr. The yield strength of the coatings was also estimated following the methodology developed by Zeng and Chiu for the analysis of the loading and unloading curves obtained from nanoindentation experiments, as well as from classical static spherical indentation tests. The microstructural analysis indicated a significant increase in the unmelted particles volume fraction and the development of interlamellar microcracks as the spraying distance increases, leading to a decrease in the elastic modulus of the coatings. Both hardness and elastic modulus showed an anisotropic behavior and were found to be higher on the cross section of the coating than on the deposition plane. A satisfactory comparison between the predicted and experimental values of the coatings yield strength was observed for all the conditions investigated.  相似文献   

11.
Solid particle erosion behavior of the HVOF deposited NiCr and Stellite-6, coatings on boiler tube steels was evaluated. The study was conducted, using an air jet erosion test rig at a velocity of 26 m/s and impingement angle of 30° and 90°, on uncoated as well as HVOF spray coated boiler tube steel (GrA1) at 250 °C. The coatings were harder as compared to substrate steel. Scanning electron microscopy (SEM) technique was used to analyse the eroded surface. Mass losses of the coatings were found marginally higher than the boiler tube steel.  相似文献   

12.
The present work has been conducted in order to determine the microstructural features, hardness and elastic modulus of two different Ni-base coatings deposited by means of HVOF thermal spray, onto a SAE 1045 plain carbon steel substrate. The morphology and chemical composition of the phases that are present in the coatings were characterized by means of SEM, EDS and XRD techniques. Image analysis was used for the evaluation of the coatings porosity. Both conventional and instrumented indentation tests were also carried out on the surface and cross section of the coatings, in order to evaluate the effect of coating microstructure on hardness and elastic modulus. Conventional indentation tests were conducted using a Knoop indenter and a maximum load of 9.8 N. Instrumented indentation tests, in which the indenter depth and applied load were recorded continuously, were carried out employing a Vickers indenter and maximum loads of 0.49, 0.98, 1.96, 4.9 and 9.8 N. Instrumented nanoindentation tests (in a continuous stiffness measurement mode) were also conducted employing a Berkovich indenter with a maximum load of 9.8 N. The elastic modulus was computed by means of the Oliver and Pharr method and compared with the values determined by means of the method earlier advanced by Marshall et al. The results obtained indicate that the elastic modulus values determined on the cross section of the coatings are higher than those obtained on the surface, clearly indicating the anisotropy of the structure. Also, the values found employing a Berkovich indenter are very similar to those derived by means of the Vickers indenter. In addition, the these values are in agreement with those determined by taking into consideration the elastic recovery of the short Knoop diagonal after removal of the load.  相似文献   

13.
The application of thick high-velocity oxyfuel (HVOF) coatings on metallic parts has been widely accepted as a solution to improve their wear properties. The adherence of these coatings to the substrate is strongly influenced by the residual stresses generated during the coating deposition process. In an HVOF spraying process, due to the relatively low processing temperature, significant peening stresses are generated during impact of molten and semimolten particles on the substrate. At present, finite-element (FE) models of residual stress generation for the HVOF process are not available due to the increased complexities in modeling the stresses generated due to the particle impact. In this work, an explicit FE analysis is carried out to study the effect of molten particle impingement using deposition of an HVOF sprayed copper coating on a copper substrate as an example system. The results from the analysis are subsequently used in a thermomechanical FE model to allow the development of the residual stresses in these coatings to be modeled. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

14.
Pre-alloyed and plasma spheroidized composite powders were used as the feedstock in the plasma spraying of functionally graded yttria stabilized zirconia (YSZ)/NiCoCrAlY coatings. The ball milling parameters of the composite powders and the plasma spraying parameters for preparing functionally graded materials (FMGs) coatings were optimized to obtain the best performance for the thermal barrier coatings (TBCs). Microstructure, physical, mechanical, and thermal properties of YSZ/NiCoCrAlY FGMs coatings were investigated and compared with those of traditional duplex coatings. Results showed that the advantages of using pre-alloyed composite powders in plasma spraying were to ensure chemical homogeneity and promote uniform density along the graded layers. Microstructure observation showed the gradient distribution of YSZ and NiCoCrAlY phases in the coating, and no clear interface was found between two adjacent different layers. Oxidation occurred during plasma spray and the resultant aluminum oxide combines with YSZ in a wide range of proportions. The bond strength of functionally graded coatings was about twice as high as that of the duplex coatings because of the significant reduction of the residual stresses in the coatings. The thermal cycling resistance of functionally graded coating was much better than that of duplex coating.  相似文献   

15.
Skin passing or temper rolling introduces a strain gradient through the thickness of the sheet which, in turn, results in a residual stress profile through the thickness. These residual stresses can have a major effect on the elastic-plastic transition in bending operations, but the effect of residual stresses on downstream forming has yet to be determined.In this work, a commercial aluminium alloy, AA6063, was reduced in thickness by rolling in a laboratory mill to introduce residual stresses into the material. The strips were then tested in tension and pure bending and the material behaviour close to the elastic-plastic transition investigated. Substantial lowering of the elastic-plastic transition in the bending moment was observed while the opposite trend was found in the tensile test. The rolling process was analyzed using finite element analysis and the distribution of residual stresses determined; theoretical moment curvature characteristics were obtained using the output of this analysis as the input to the modelling for pure bending. The results show qualitatively how the material is softened in bending after rolling and demonstrate that this is partly due to the residual stress gradients in the material.  相似文献   

16.
以HVOF梯度功能涂层在结晶器的应用作为研究背景,对CrZrCu表面超音速火焰喷涂CoNiCrAlY+CoCrMoSi梯度涂层与Ni-Co电镀层进行了对比分析,通过SEM,EDS,XRD及X射线应力仪等手段分析了涂/镀层的微观组织结构与应力状态,采用拉伸法测试了结合强度.结果表明,涂层与基体之间的结合比镀层较为紧密;梯...  相似文献   

17.
A ‘duplex cobalt coated’ near-nanostructured WC-17wt.%Co powder was used to produce nanostructured coatings. The tribological performance of this coating was compared with a commercial WC-17wt.%Co microstructured coating using a pin-on-plate method (ASTM G133-05 standard) with a data acquisition software to perform a real time analysis of the sliding wear process. The wear rate was studied using loads from 10 to 60 N and for various sliding distances. The metallurgical analysis of the coatings showed that the duplex Co coated powder could be sprayed to produce dense coating. Furthermore, the near-nanostructured coating showed better fracture toughness values and this corresponded to a difference in wear mechanism between the two types of coatings. The greater “plasticity” in the near-nanostructured coating was recorded as microgrooves in the wear tracks and, in comparison, brittle fracture was observed in the wear tracks produced on the microstructured coating.  相似文献   

18.
The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray processes onto solid substrates plays a fundamental role in the preliminary stages of coating design and process parameters optimization. The main objective of the present investigation was to determine the residual stresses by means of the incremental hole drilling method in order to perform the measurement of the stress field through the thickness of two different HVOF Nickel-based coatings. The holes through the coatings were carried out by means of a high velocity drilling machine (Restan). A finite element calculation procedure was used to identify the calibration coefficients necessary to evaluate the stress field. The Integral method was used for the analysis of non-uniform through-thickness stresses. The results for both coatings indicate that the nature of the residual stresses is tensile and their values are between 150-300 MPa.  相似文献   

19.
One factor that affects the suitability of tungsten carbide (WC) coatings for wear and corrosion control applications is the fatigue life of the coated part. Coatings, whether anodized or thermal spray coated, can reduce the fatigue life of a part compared to an uncoated part. This study compares the fatigue life of uncoated and thermal spray coated 6061 Al specimens. The relation between the residual stress level in the coating and the fatigue life of the specimen is investigated. Cyclic bending tests were performed on flat, cantilever beam specimens. Applied loads placed the coating in tension. Residual stress levels for each of the coating types were determined experimentally using the modified layer removal method. Test results show that the fatigue life of WC coated specimens is directly related to the level of compressive residual stress in the coating. In some cases, the fatigue life can be increased by a factor of 35 by increasing the compressive residual stress in the coating.  相似文献   

20.
Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号