首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A conventional differential pair LC oscillator is capable of generating only a single fundamental oscillation frequency. This brief presents the theoretical study of a novel oscillator that incorporates higher order LC filters to produce multiple oscillation frequencies that may be several octaves apart. These multiple oscillation frequencies are obtained from a single oscillator, thereby reducing the area of the circuit when being used for multistandard wireless applications. Moreover, a multi-order oscillator does not suffer from large parasitic capacitances from switches, which is a common drawback in switched-inductor tuned oscillators. A detailed analysis is carried out, and useful design insights are provided  相似文献   

2.
3.
A dual-band LC voltage-controlled oscillator (VCO) architecture suitable for GSM/PCS/DCS applications is presented. The VCO utilizes a fourth-order resonance tank and avoids quality-factor-deteriorating switches. The paper outlines the design tradeoffs and the VCO when using a fourth-order resonator. The 0.8-GHz/1.8-GHz test chip was fabricated in the 0.5-mum IBM-5AM SiGe process and has achieved phase noise of -134 dBc/Hz at a 1-MHz frequency offset from the carrier, with 56-MHz and 121-MHz tuning ranges in the corresponding bands. The VCO core consumes 15 mW from a 2.5-V power supply  相似文献   

4.
Quadrature injection-lockedLC dividers with either a Miller topology or an injection-lockedLC VCO topology are coupled with transconductors to enhance their locking range. The effect of the transconductance coupling is analyzed theoretically and through circuit simulation. Both topologies were fabricated by 90-nm CMOS technology with a target input center frequency of 20 GHz and output frequency of 10 GHz. The measured locking range for the Miller topology with transconductance coupling is 25.3%, compared to 20.9% without coupling. The measured locking range for the injection-locked LC VCO topology with transconductance coupling is 18.1%, compared to 12.9% without coupling. Moreover, power consumption for both dividers is 6.4 mW with a 1.2-V supply.  相似文献   

5.
A new injection-locked frequency divider (ILFD) using a standard 0.18 $mu$m CMOS process is presented. The ILFD is based on a differential Colpitts voltage controlled oscillator (VCO) with a direct injection MOSFET for coupling an external signal to the resonators. The VCO is composed of two single-ended VCOs coupled with two transformers. Measurement results show that at the supply voltage of 1.4 V the divider's free-running frequency is tunable from 4.77 to 5.08 GHz, and the proposed circuit can function as a first harmonic injection-locked oscillator, divide-by-2, -3, and -4 frequency divider. At the incident power of 0 dBm the divide-by-2 operation range is from the incident frequency 7.7 to 11.5 GHz and the divide-by-4 operation range is from the incident frequency 18.9 to 20.2 GHz.   相似文献   

6.
A pseudo-exponential capacitor bank structure is proposed to implement a wide-band CMOS LC voltage-controlled oscillator (VCO) with linearized coarse tuning characteristics. An octave bandwidth VCO employing the proposed 6-bit pseudo-exponential capacitor bank structure has been realized in 0.18-mum CMOS. Compared to a conventional VCO employing a binary weighted capacitor bank, the proposed VCO has considerably reduced the variations of the VCO gain (K VCO) and the frequency step per a capacitor bank code (f step/code) by 2.7 and 2.1 times, respectively, across the tuning range of 924-1850 MHz. Measurement results have also shown that the VCO provides the phase noise of - 127.1 dBc/Hz at 1-MHz offset for 1.752-GHz output frequency while dissipating 6 mA from a 1.8-V supply.  相似文献   

7.
We describe how a 2-D rectangular lattice of inductors and capacitors can serve as an analog Fourier transform device, generating an approximate discrete Fourier transform (DFT) of an arbitrary input vector of fixed length. The lattice displays diffractive and refractive effects and mimics the combined optical effects of a thin-slit aperture and lens. Diffraction theories in optics are usually derived for 3-D media, whereas our derivations proceed in 2-D. Analytical and numerical results show agreement between lattice output and the true DFT. Potentially, this lattice can be used for an extremely low latency and high throughput analog signal processing device. The lattice can be fabricated on-chip with frequency of operation of more than 10 GHz.   相似文献   

8.
This paper presents a scheme to accurately tune the quality factor of second-order LC bandpass filters. The information of the magnitude response at the center and one of the cutoff frequencies is used to tune both the amplitude and the quality factor of the filter using two independent yet interacting loops. Furthermore, the synergic interaction between the loops makes the proposed scheme stable and insensitive to the mismatch between the input amplitudes. A chip prototype was implemented in a 0.35-mum CMOS process and consumes 4.3 mA from a single 1.3-V supply. Measurement results show that at 1.97 GHz the quality factor is tunable from 60 to 220 while the amplitude is tunable between -15 and 0 dBm with worst case quality factor and amplitude tuning accuracies of 10% and 7%, respectively  相似文献   

9.
Cryoablation is a widely used method for the treatment of nonresectable primary and metastatic liver tumors. A model that can accurately predict the size of a cryolesion may allow more effective treatment of tumor, while sparing normal liver tissue. We generated a computer model of tissue cryoablation using the finite-element method (FEM). In our model, we considered the heat transfer mechanism inside the cryoprobe and also cryoprobe surfaces so our model could incorporate the effect of heat transfer along the cryoprobe from the environment at room temperature. The modeling of the phase shift from liquid to solid was a key factor in the accurate development of this model. The model was verified initially in an ex vivo liver model. Temperature history at three locations around one cryoprobe and between two cryoprobes was measured. The comparison between the ex vivo result and the FEM modeling result at each location showed a good match, where the maximum difference was within the error range acquired in the experiment (< 5 degC). The FEM model prediction of the lesion size was within 0.7 mm of experimental results. We then validated our FEM in an in vivo experimental porcine model. We considered blood perfusion in conjunction with blood viscosity depending on temperature. The in vivo iceball size was smaller than the ex vivo iceball size due to blood perfusion as predicted in our model. The FEM results predicted this size within 0.1-mm error. The FEM model we report can accurately predict the extent of cryoablation in the liver.  相似文献   

10.
Systematic design of low-dropout-regulator (LDO) regulated low-phase-noise LC-tank voltage controlled oscillators (VCOs) is presented. Low-frequency sensitivity profile of power supply induced phase noise of a typical cross-coupled LC-tank VCO is investigated. The relationship between frequency pushing and power supply-induced phase noise is derived. Systematic codesign of VCO sensitivity to low-frequency supply noise with respect to an LDO output noise and power supply rejection profile is introduced. To demonstrate the design approach experimentally, two 2.4-GHz LC-tank VCOs with pMOS and nMOS switching devices powered by PFET LDOs are designed and fabricated on an 0.18-$mu$m, 7-layer metal CMOS process. By using an integrated LDO, it is shown that the VCO phase-noise sensitivity to low frequency improves by 55 dB at 100-kHz offset.   相似文献   

11.
A 60 GHz voltage-controlled oscillator with an inductive division LC tank has been designed in 90 nm CMOS. The analysis of the oscillator shows that the presence of higher harmonics, the capacitance nonlinearity and the very high $K _{rm VCO}$ are critical for the phase noise performance of oscillators. Therefore, a pseudo-differential amplifier is employed in this design because of its high linearity. Furthermore, the proposed inductive division reduces the phase noise by increasing the signal amplitude across the varactor, without affecting the operation mode of the cross-coupled pair transistors. It also helps to increase the tuning range by isolating the varactor from the parasitic capacitances of the transistors and interconnects. The mm-wave oscillator is fabricated in a 90 nm CMOS technology. Under 0.7 V supply, the oscillator achieves a tuning range from 53.2 GHz to 58.4 GHz, consuming 8.1 mW. At 58.4 GHz, the phase noise is $-hbox{91~dBc}/hbox{Hz}$ at 1 MHz offset. Under 0.43 V supply, the oscillator achieves a tuning range from 58.8 to 61.7 GHz. At 61.7 GHz, the phase noise is $-hbox{90~dBc}/hbox{Hz}$ @1$~$MHz offset with a power consumption of only 1.2 mW.   相似文献   

12.
Epiretinal prostheses are being developed to bypass a degenerated photoreceptor layer and excite surviving ganglion and inner retinal cells. We used custom microfabricated multielectrode arrays with 200-mum-diameter stimulating electrodes and 10-mum-diameter recording electrodes to stimulate and record neural responses in isolated tiger salamander retina. Pharmacological agents were used to isolate direct excitation of ganglion cells from excitation of other inner retinal cells. Strength-duration data suggest that, if amplitude will be used for the coding of brightness or gray level in retinal prostheses, shorter pulses (200 mus) will allow for a smaller region in the area of the electrode to be excited over a larger dynamic range compared with longer pulses (1 ms). Both electrophysiological results and electrostatic finite-element modeling show that electrode-electrode interactions can lead to increased thresholds for sites half way between simultaneously stimulated electrodes (29.4 plusmn 6.6 nC) compared with monopolar stimulation (13.3 plusmn 1.7 nC, < 0.02). Presynaptic stimulation of the same ganglion cell with both 200- and 10- m-diameter electrodes yielded threshold charge densities of 12 plusmn 6 and 7.66 plusmn 1.30 nC/cm2, respectively, while the required charge was 12.5 plusmn 6.2 and 19 plusmn 3.3 nC.  相似文献   

13.
We show that electrical impedance tomography (EIT) image reconstruction algorithms with regularization based on the total variation (TV) functional are suitable for in vivo imaging of physiological data. This reconstruction approach helps to preserve discontinuities in reconstructed profiles, such as step changes in electrical properties at interorgan boundaries, which are typically smoothed by traditional reconstruction algorithms. The use of the TV functional for regularization leads to the minimization of a nondifferentiable objective function in the inverse formulation. This cannot be efficiently solved with traditional optimization techniques such as the Newton method. We explore two implementations methods for regularization with the TV functional: the lagged diffusivity method and the primal dual–interior point method (PD-IPM). First we clarify the implementation details of these algorithms for EIT reconstruction. Next, we analyze the performance of these algorithms on noisy simulated data. Finally, we show reconstructed EIT images of in vivo data for ventilation and gastric emptying studies. In comparison to traditional quadratic regularization, TV regulariza tion shows improved ability to reconstruct sharp contrasts.   相似文献   

14.
In this letter, for the first time, we have successfully fabricated silicon-oxide-nitride-oxide-silicon (SONOS) devices with embedded silicon nanocrystals (Si-NCs) in silicon nitride using in situ method. This process is simple and compatible to modern IC processes. Different Si-NCs deposition times by in situ method were investigated at first. SONOS devices with embedded Si-NCs in silicon nitride exhibit excellent characteristics in terms of larger memory windows (> 5.5 V), lower operation voltage, high P/E speed, and longer retention time (> 108 s for 13% charge loss).  相似文献   

15.
New hydrogen-sensing amplifiers are fabricated by integrating a GaAs Schottky-type hydrogen sensor and an InGaP–GaAs heterojunction bipolar transistor. Sensing collector currents ( $I_{rm CN}$ and $I_{rm CH}$) reflecting to $hbox{N}_{2}$ and hydrogen-containing gases are employed as output signals in common-emitter characteristics. Gummel-plot sensing characteristics with testing gases as inputs show a high sensing-collector-current gain $(I_{rm CH}/I_{rm CN})$ of $≫hbox{3000}$. When operating in standby mode for in situ long-term detection, power consumption is smaller than 0.4 $muhbox{W}$. Furthermore, the room-temperature response time is 85 s for the integrated hydrogen-sensing amplifier fabricated with a bipolar-type structure.   相似文献   

16.
An LC source-degeneration negative-resistance cell of an LC VCO is investigated, which is capable of operating at millimeter-wave (MMW) range with low dc power consumption. Several negative-resistance cells in LC oscillators are also compared. The LC source-degenerated topology is demonstrated through a 114-GHz push-push fully integrated LC VCO implemented in TSMC 0.13-mum CMOS process. With core power consumption of 8.4 mW, the tuning range at the fundamental port is 56.4-57.6 GHz and at the push-push port is 112.8-115.2 GHz. The measured phase noise at the fundamental port is -13.6 dBc/Hz at 10-MHz offset. This VCO is believed to have the best figure of merit among MMW VCOs using bulk CMOS processes.  相似文献   

17.
Algorithms developed with a Gaussian noise assumption perform poorly in impulsive noise, such as that described by the symmetric alpha-stable (SalphaS) distribution. We investigate the performance of antipodal signaling and Viterbi decoding of convolutional codes in SalphaS noise. We demonstrate that the p-norm branch metric is robust in SalphaS noise.  相似文献   

18.
The link quality of mobile phones suffers from antenna mismatch due to fluctuating body effects. Techniques for adaptive control of impedance-matching L networks are presented, which provide automatic compensation of antenna mismatch. To secure reliable convergence, a cascade of two control loops is proposed for independent control of the real and imaginary parts of impedance. A secondary feedback path is used to enforce operation into a stable region when needed. These techniques exploit the basic properties of tunable series and parallel LC networks. A generic quadrature detector that offers a power-independent orthogonal reading of the complex impedance value is presented, which is used for direct control of variable capacitors. This approach renders calibration and elaborate software computation superfluous and allows for autonomous operation of adaptive antenna-matching modules.   相似文献   

19.
This paper presents a maximum a posteriori probability (MAP) detector, based on a forward-only algorithm that can achieve high throughputs. The MAP algorithm is optimal in terms of bit error rate (BER) performance and, with Turbo processing, can approach performance close to the channel capacity limit. The implementation benefits from optimizations performed at both algorithm and circuit level. The proposed detector utilizes a deep-pipelined architecture implemented in skew-tolerant domino and experimentally measured results verify the detector can achieve throughputs greater than 750 Mb/s while consuming 2.4 W. The 16-state EEPR4 channel detector is implemented in a 0.13$ mu{hbox {m}}$ CMOS technology and has a core area of 7.1 ${hbox {mm}}^{2}$.   相似文献   

20.
Thalamic relay cells express distinctive response modes based on the state of a low-threshold calcium channel (T-channel). When the channel is fully active (burst mode), the cell responds to inputs with a high-frequency burst of spikes; with the channel inactive ( tonic mode), the cell responds at a rate proportional to the input. Due to the T-channel's dynamics, we expect the cell's response to become more nonlinear as the channel becomes more active. To test this hypothesis, we study the response of an in silico relay cell to Poisson spike trains. We first validate our model cell by comparing its responses with in vitro responses. To characterize the model cell's nonlinearity, we calculate Poisson kernels, an approach akin to white noise analysis but using the randomness of Poisson input spikes instead of Gaussian white noise. We find that a relay cell with active T-channels requires at least a third-order system to achieve a characterization as good as a second-order system for a relay cell without T-channels.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号