首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different approaches for the measurement of a relatively small gamma dose in strong fields of thermal and epithermal neutrons as used for Boron Neutron Capture Therapy (BNCT) have been studied with various thermoluminescence detectors (TLDs). CaF(2):Tm detectors are insensitive to thermal neutrons but not tissue-equivalent. A disadvantage of applying tissue-equivalent (7)LiF detectors is a strong neutron signal resulting from the unavoidable presence of (6)Li traces. To overcome this problem it is usual to apply pairs of LiF detectors with different (6)Li content. The experimental determination of the thermal neutron response ratio of such a pair at the Geesthacht Neutron Facility (GeNF) operated by PTB enables measurement of the photon dose. In the experimental mixed field of thermal neutrons and photons of the TRIGA reactor at Mainz the photon dose measured with different types of (7)LiF/(nat)LiF TLD pairs agree within a standard uncertainty of 6% whereas the CaF(2):Tm detectors exhibit a photon dose by more than a factor of 2 higher. It is proposed to determine suitable photon energy correction factors for CaF(2):Tm detectors with the help of the (7)LiF/(nat)LiF TLD pairs in the radiation field of interest.  相似文献   

2.
A set of cylindrical recombination chambers, including a tissue-equivalent chamber and three graphite chambers filled with different gases-CO(2), N(2) and (10)BF(3), was designed for the dosimetry of therapeutic neutron radiation beams used for BNCT. The separation of the dose components is based on differences of the shape of the saturation curve depending on the LET spectrum of the investigated radiation. The measurements using all the chambers were performed in a reactor beam of NRI ReZ (Czech Republic) and in the reference radiation fields of a (252)Cf radiation source free in air or in filters.  相似文献   

3.
One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originates in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curves and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals.  相似文献   

4.
A (6)LiF-rich thermoluminescent sheet-type dosemeter ((6)LiF-rich NTL sheet) was developed for neutron 2D dosimetry. The dosemeter utilises the (6)Li(n, alpha)(3)H reaction to detect thermal neutrons. Responses of the (6)LiF-rich NTL sheet to neutrons were measured at the neutron beam irradiation facility for BNCT in JRR-4 Research Reactor at the Japan Atomic Energy Research Institute. Placement of a multi-leaf collimator at the output port of the neutron (beam) irradiation facility, produced either stripe- or round-shaped neutron distributions; the spatial distribution was measured using the developed NTL sheets. Direct measurements of neutron attenuation in water were also carried out using the developed NTL sheet, submersed in a water phantom. In each experiment, NTL sheets having natural abundance (7.9%) of LiF, and (6)LiF-enriched NTL (18.94%) sheet were irradiated under the same conditions. The ratio of thermoluminescence intensities of the (6)LiF-rich NTL sheet to that of the normal NTL sheet was compared to a theoretically calculated value. The experimental measurements are shown to be in good agreement with the calculations.  相似文献   

5.
To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.  相似文献   

6.
An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO33− radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO33− radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.  相似文献   

7.
During DIMOND CA, a thermoluminescence dosimetry intercomparison has been performed, in order to ensure that all participants measure the same dose. After the calibrating and annealing procedures, 50 TLD pellets (in groups of five) of each participating country were sent to the coordinator to be irradiated with 'unknown' radiations (blind test). The irradiation conditions (8 different set-ups, one for each group of pellets per participant) were (i) one gamma irradiation (60Co), at air kerma in the range of 0.3 to 50.0 mGy, (ii) seven X ray irradiations, at air kerma in the range of 0.3 to 50.0 mGy, with tube potential in the range of 40 to 150 kV and a variety of filter combinations. Ten pellets (two groups) were used for background and transport dose evaluation. After measuring the TLDs, the participants sent the results to the coordinator for intercomparison. Irradiating set-up conditions, evaluated doses, as well as comparison of mean values with the 'true' nominal doses are presented and discussed.  相似文献   

8.
Recombination microdosimetric method (RMM), based on the phenomenon of initial recombination of ions is applied to determine the distribution of the absorbed dose versus linear energy transfer (LET). Usually, the recombination chambers used for RMM are filled with tissue-equivalent gas, but the response of the device can be adjusted to the actual needs by the use of different gases. Using a graphite chamber filled with nitrogen and 10BF3 it was shown that RMM can also be used with chambers containing these gases. This opens the possibility of designing a recombination chamber for the determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high-LET particles from the (n,10B) reaction in simulated tissue with different contents of 10B. It was also necessary to improve the method for the determination of initial recombination at low polarising voltages, when volume-recombination and back-diffusion of ions are considerably high.  相似文献   

9.
Study of a method based on TLD detectors for in-phantom dosimetry in BNCT   总被引:1,自引:0,他引:1  
A method has been developed, based on thermoluminescent dosemeters (TLD), aimed at measuring the absorbed dose in tissue-equivalent phantoms exposed to thermal or epithermal neutrons, separating the contributions of various secondary radiation generated by neutrons. The proposed method takes advantage of the very low sensitivity of CaF2:Tm (TLD-300) to low energy neutrons and to the different responses to thermal neutrons of LiF:Mg,Ti dosemeters with different 6Li percentage (TLD-100, TLD-700, TLD-600). The comparison of the results with those obtained by means of gel dosemeters and activation foils has confirmed the reliability of the method. The experimental modalities allowing reliable results have been studied. The glow curves of TLD-300 after gamma or neutron irradiation have been compared; moreover, both internal irradiation effect and energy dependence have been investigated. For TLD-600, TLD-100 and TLD-700, the suitable fluence limits have been determined in order to avoid radiation damage and loss of linearity.  相似文献   

10.
The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground.  相似文献   

11.
A thorough evaluation of the dose inside a specially designed and built facility for extra-corporeal treatment of liver cancer by boron neutron capture therapy (BNCT) at the High Flux Reactor (HFR) Petten (The Netherlands) is the necessary step before animal studies can start. The absorbed doses are measured by means of gel dosemeters, which help to validate the Monte Carlo simulations of the spheroidal liver holder that will contain the human liver for irradiation with an epithermal neutron beam. These dosemeters allow imaging of the dose due to gammas and to the charged particles produced by the (10)B reaction. The thermal neutron flux is extrapolated from the boron dose images and compared to that obtained by the calculations. As an additional reference, Au, Cu and Mn foil measurements are performed. All results appear consistent with the calculations and confirm that the BNCT liver facility is able to provide an almost homogeneous thermal neutron distribution in the liver, which is a requirement for a successful treatment of liver metastases.  相似文献   

12.
The responses of readings by the TL dosimetry system MR200 TL developed in-house and used at JSI and the TOLEDO TL system used at RBI are compared. Ten measurements at different doses ranging from 0.01 mSv to 5 Sv were carried out. A set of 36 dosemeters with three pellets of CaF2:Mn were irradiated in radiation fields of 137Cs and 60Co. Analysis of the measured results shows that at doses below 0.1 Sv, readers' outputs do not differ >5% from each other. At doses >1 Sv, the results obtained by the MR200 reader must be corrected with a known factor. Finally, the reproducibility of the results from the MR200 was tested.  相似文献   

13.
A novel method of determining two-dimensional (2-D) dose distributions is presented, using in-house developed, large-area (a few cm(2)) thermoluminescent (TL) detectors based on LiF powder plated on Al foil. An in-house developed planar large-area TL reader equipped with a coupled charge device (CCD) camera is used for readout, providing digital images of 2-D dose distributions on the surface of these large-area TL detectors. The capability of the newly developed system is demonstrated by mapping 2-D dose distributions around a brachytherapy source, at dose ranges and source geometries relevant for clinical radiotherapy. Examples of local and dynamic evaluation of TL output from conventional TL detectors are also shown.  相似文献   

14.
Preliminary results of an inter-laboratory collaborative work on the application of computerised glow curve analysis to TL personal dosimetry are presented. Very simple analysis methods have proved to be useful for the evaluation of glow curves similar to those encountered in the dosimetric control of radiation workers. A first result obtained in the study has been the possibility of simplifying the TL working procedures by eliminating pre-annealing or pre-heating steps employed in conventional systems to avoid low temperature peaks. The presence of these unwanted peaks can be detected by the computerised evaluation methods, discriminating their contribution to the dosimetric TL data.  相似文献   

15.
The use of active personal dosemeters (APDs) not only as a warning device but also, in some cases, as an official and hence stand-alone dosemeter is rapidly increasing. A comparison in terms of dose, energy and angle dependence, among different types of APD and a routinely used whole-body thermoluminescence dosemeter (TLD) has been performed. Significant differences were found between the TLD readings and mainly some not commonly used APDs. The importance of choosing the best adapted APD according to the radiation field characteristics is pointed out.  相似文献   

16.
The use of boron neutron capture therapy (BNCT) for the treatment of deep-seated tumors requires neutron beams of suitable energy and intensity. Simulations indicate the optimal energy to reside in the epithermal region, in particular between 1 and 10 keV. Therapeutic neutron beams with high spectral purity in this energy range could be produced with accelerator-based neutron sources through a suitable neutron-producing reaction. Herein, we report on different solutions that have been investigated as possible sources of epithermal neutron beams for BNCT. The potential use of such sources for a hospital-based therapeutic facility is discussed.  相似文献   

17.
Electron spin resonance (ESR) spectroscopy and the Monte Carlo (MC) technique were jointly applied to the physical dose reconstruction of the accident that occurred on 2 December 2001 in Georgia. Three people were exposed to two very-high-activity (2.6 x 10(15) Bq) 90Sr sources. Following this exposure, the two most seriously affected victims exhibited severe radiological injuries localised in the back as well as a haematopoietic syndrome. The information concerning the circumstances of the accident in terms of sequences of irradiation and the exposure time was not clearly established. The physical dose reconstruction of the accident was performed for one victim, treated in France, using both MC simulations and ESR measurements made on one vertebra and two rib samples removed from the victim for medical reasons. The complementary nature of the two tools made it possible to estimate the dose distribution within the body with reasonable accuracy and helped to develop the treatment strategy.  相似文献   

18.
We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.  相似文献   

19.
The optically stimulated luminescence (OSL) of LiF:Mg,Ti (TLD-100) following irradiation by beta and alpha particles was investigated by the measurement of the excitation and emission spectra of OSL and comparison with thermoluminescence (TL) characteristics. Measurements were also carried out on nominally pure LiF monocrystals. The preferential excitation of OSL compared to TL following high-ionisation density (HID) alpha irradiation is naturally explained via the identification of OSL with the 'two-hit' F2 or F3+ centre, whereas the major component of composite TL glow peak 5 is believed to arise from a 'one-hit' complex defect. This discovery allows near-total discrimination between HID radiation and low-ionisation density radiation and may have significant potential in mixed-field radiation dosimetry.  相似文献   

20.
The location of the glow peaks depends on the heating rate. It takes some time until the crystal reaches the heater temperature, and this time lag has a direct effect on the shift of peaks towards higher temperatures. Some information on the high-temperature peaks may be lost if the readout conditions (mainly length of time) are not properly chosen. Step heating profiles to a varying final temperature between 300 degrees C and 125 degrees C were used to study the time dependence of the collected information in the glow curves of (6)LiF:Mg,Ti crystals, and the minimal heating time for evaluation of thermal neutron doses was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号