首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用六面顶液压机,以铝、钴为烧结助剂,在压力5.0-5.5 GPa、温度1 350-1 700℃、保温时间5 min的条件下制备出碳化硼陶瓷,并通过XRD衍射仪、SEM扫描电镜、维式硬度仪对其进行了物相分析、微观形貌表征和硬度测量,研究了压力、温度对碳化硼复合陶瓷力学性能的影响。实验结果表明,在5.5 GPa、1 550℃时,碳化硼陶瓷具有较好的综合性能,维式硬度为4 022 HV、磨耗比为2.5。其中铝、钴作为烧结助剂不仅降低了烧结温度还促进烧结反应,增强颗粒间的扩散促使陶瓷更快地达到高致密度,改善其力学性能。  相似文献   

2.
碳化硼陶瓷具有较低的密度、仅次于氮化硼和金刚石的硬度以及优异的耐腐蚀性能,满足防弹材料要求的高强度、高耐磨、高硬度、低密度,简称为"三高一低",当前已经应用于高端装备的防护系统中。然而,碳化硼陶瓷为强共价化合物,且具有低的扩散系数,导致其在制备过程中的主要问题是烧结致密化问题和脆性问题。因此,许多的研究工作集中在碳化硼陶瓷的烧结技术、烧结助剂以及对碳化硼陶瓷进行增韧。本文聚焦防弹装甲用碳化硼陶瓷,首先从碳化硼的晶形结构和相图,综述了碳化硼陶瓷粉体的制备技术以及碳化硼陶瓷的烧结工艺,阐述了改善碳化硼断裂韧性较低的方法,最后分析了碳化硼陶瓷防弹材料的研究现状,并且展望陶瓷防弹装甲的未来研究方向。  相似文献   

3.
以TiN/WC/Al为主要实验原料,在高温和超高压条件下合成聚晶立方氮化硼(PCBN)复合片.利用X射线衍射(XRD)、扫描电子显微镜(SEM)对复合片的物相组成、显微结构进行了分析,同时对复合材料的气孔率、显微硬度、抗弯强度以及切削性能进行了测试.研究表明:在超高压5.5 GPa时,烧结温度越高PCBN复合片的性能越...  相似文献   

4.
以纳米SiC为原料,用两面顶压机在不同工艺条件下(1100-1300℃,4.0-4.5GPa,20-35min)实现了无烧结助剂添加的SiC陶瓷体的烧结.研究了烧结工艺对SiC陶瓷性能的影响.用XRD、SEM、显微硬度测试仪等对SiC高压烧结体进行了表征.结果表明:采用超高压工艺可实现无烧结助剂SiC陶瓷高致密化烧结;烧结体晶粒长大得到抑制,维持在纳米级,晶格常数收缩发生了收缩;烧结体显微硬度和密度随烧结温度、烧结压力、保温时间的升高或延长而提高.在4.5GPa/1250℃/35min的超高压烧结条件下烧结的无烧结助剂SiC致密度达到96%,且显微硬度达到Hv1.96 3850.  相似文献   

5.
以氧化铝、活性碳为烧结助剂,以碳化硼为基体、采用真空热压烧结技术制备碳化硼陶瓷。研究成分配比、烧结工艺对烧结体致密度及力学性能的影响;探讨了添加剂碳化硼陶瓷的烧结机理。结果表明,以氧化铝、活性碳为烧结助剂,采用真空热压烧结工艺,制备出碳化硼陶瓷;碳化硼烧结的最佳材料配方与烧结工艺:B4C:Al2O3:C=70:15:15,烧结温度1930℃,压力20MPa,保温时间1h;所得碳化硼烧结体性能:开口气孔率1.49%,相对密度为90.33%,抗弯强度为144.27MPa,硬度(HRA)95。  相似文献   

6.
以AlN、Pr2O3做为SiC陶瓷液相烧结的复合助剂,选定不同的助剂含量(5wt%~ 20wt%)和不同的助剂摩尔比例(Pr2O3/AlN=1/3、1/1、3/1),在1800~2000℃温度下,采用热压和无压烧结的方法制备SiC陶瓷样品,并对这些陶瓷样品的性能进行了研究.实验结果表明,助剂比1/3组的样品显示出更有效地促进SiC陶瓷致密化,该组样品无压烧结最大相对密度为87%,热压烧结具有最高的相对密度96.1%、维氏硬度23.4 GPa、抗弯强度549.7MPa、断裂韧性5.36 MPa·m1/2,显微结构中可观察到晶粒拔出现象,断裂模式为沿晶断裂.  相似文献   

7.
王君  张玉军  龚红宇  魏红康 《陶瓷》2008,(1):13-15,20
碳化硼陶瓷具有高硬度、高熔点和低密度的特点,是优异的结构陶瓷,在民用、宇航和军事等领域都得到了重要应用.综述了无压烧结碳化硼陶瓷的国内外研究进展,阐述了不同的烧结助剂、烧结温度和颗粒尺寸等因素对碳化硼陶瓷性能的影响.  相似文献   

8.
碳化硼陶瓷具有高硬度、高熔点和低密度的特点,是优异的结构陶瓷,在民用、航空和军事等领域都得到了重要应用。本文综述了无压烧结碳化硼陶瓷的国内外研究进展,阐述了不同的烧结助剂、烧结温度和颗粒尺寸等因素对碳化硼陶瓷性能的影响。  相似文献   

9.
以纳米SiB6颗粒为增强相,YAG为烧结助剂,采用无压液相烧结技术制备了SiC/纳米SiB6复合陶瓷,主要研究两步烧结对复合陶瓷烧结特性和力学性能的影响。研究结果表明,两步烧结对复合陶瓷的烧结性能和力学性能有一定的影响。第一步烧结温度由1850℃升至1900℃,SiC/纳米SiB6复合陶瓷的收缩率、失重率和相对密度增加,抗弯强度和维氏硬度整体下降;而第二步烧结温度由1850℃升高到1900℃,复合陶瓷失重率增加,收缩率和相对密度下降,抗弯强度和维氏硬度均有所提高。  相似文献   

10.
采用无压烧结工艺,添加质量分数9.5%的Y2O3作为烧结助剂,进行了碳化硼陶瓷的2100℃、2200℃和2250℃烧结2h实验,对样品进行了体积密度、显气孔率、维氏硬度、表面形貌和晶体结构测试,并与纯碳化硼2250℃烧结的样品进行了比较。实验表明,添加Y2O3助剂2250℃烧结2h的样品的体积密度、气孔率、硬度指标比纯碳化硼粉2250℃烧结2h的样品有较大幅度提升;在碳化硼晶粒扩散时,Y2O3助剂和碳化硼晶粒协同扩散,使碳化硼晶粒趋向于致密化烧结;Y2O3助剂的介入使碳化硼晶粒生长(运动)机制发生了变化。  相似文献   

11.
张诚  张光磊  郝宁  于刚  秦国强 《硅酸盐通报》2022,41(12):4425-4431
α-Si3N4粉为原料,MgO-La2O3-Lu2O3为三元复合烧结助剂,采用气压烧结工艺制备Si3N4陶瓷条,研究烧结助剂及添加β-Si3N4增强相对Si3N4陶瓷微观结构及力学性能的影响。结果表明,三元复合烧结助剂促进了烧结的致密化,提高了材料的力学性能,在最高烧结温度1 750 ℃、复合烧结助剂添加量8%(质量分数)时,得到密度为3.172 8 g/cm3、维氏硬度达到15.85 GPa、断裂韧性和抗弯强度分别为9.69 MPa·m1/2和1 029 MPa的冰刀用Si3N4陶瓷。添加β-Si3N4材料的断裂韧性得到提高,最高达到10.33 MPa·m1/2。Si3N4陶瓷本身的高硬度与加入的稀土氧化物使得所制备冰刀的硬度与润滑性能得到提高,表面性能优良。  相似文献   

12.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48 GPa、7.27 MPa·m~(1/2)、570.36 MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33 GPa、5 MPa·m~(1/2)、204.45 MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

13.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48GPa、7.27MPa·m1/2、570.36MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33GPa、5MPa·m1/2、204.45MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

14.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48GPa、7.27MPa·m1/2、570.36MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33GPa、5MPa·m1/2、204.45MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

15.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48GPa、7.27MPa·m1/2、570.36MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33GPa、5MPa·m1/2、204.45MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

16.
以α-Si3N4粉末为原料,Y2O3和MgAl2O4体系为烧结助剂,采用无压烧结方式,研究了烧结温度、保温时间、烧结助剂含量以及各组分配比对氮化硅致密化及力学性能的影响。结果表明:以Y2O3和MgAl2O4为烧结助剂体系,氮化硅陶瓷在烧结温度为1 600 ℃,保温时间为4 h,烧结助剂含量为12.5%(质量分数),Y2O3和MgAl2O4质量比为1∶1时,综合性能最好;氮化硅陶瓷显气孔率为0.21%,相对密度为98.10%,抗弯强度为598 MPa,维氏硬度为15.55 GPa。  相似文献   

17.
以La2O3和Y2O3作为复合烧结助剂,采用热压烧结法制备了Si3N4基复合陶瓷材料。研究了保温时间和烧结助剂含量对复合材料微观结构及力学性能的影响。研究表明:所制备的Si3N4/TiC陶瓷复合材料的微观结构呈现纵横交错、相互嵌套的结构,晶粒尺寸呈现明显的双峰分布特征,单位面积内晶粒数量与烧结助剂含量之间呈线性降低关系。当烧结助剂质量含量为8%时,该复合陶瓷材料具有最优的力学性能,其抗弯强度、断裂韧性和Vickers硬度分别达到943MPa,8.38MPa·m1/2和16.67GPa。  相似文献   

18.
以Al_2O_3-Y_2O_3和Mg O-Y_2O_3为烧结助剂,通过热压烧结分别在1600℃和1800℃下制备Si_3N_4陶瓷。结果表明:以Al_2O_3-Y_2O_3助剂时,在1800℃热压烧结制备的Si_3N_4陶瓷具有显著的双峰结构和优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为15.60±0.27 GPa、1105.99±68.39 MPa和7.13±0.37 MPa·m~(1/2);以Mg O-Y_2O_3为助剂时,在1600℃热压烧结制备的Si_3N_4陶瓷具有较高的致密度,显微结构含有长径比较高的晶须状Si_3N_4晶粒,并且具有优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为16.53±0.21 GPa、1166.90±61.73 MPa和6.74±0.17 MPa·m~(1/2)。因此,在研究烧结助剂对Si_3N_4陶瓷性能的影响时,需结合其特定合适的烧结温度,才能有望获得综合性能优异的Si_3N_4陶瓷。  相似文献   

19.
在高温高压(3~5GPa,1500~1900K)下通过"一步法"合成了纳米结构B6O超硬复合材料,对合成样品的物理化学性能、微观结构、相组成进行检测。复合材料平均硬度在32GPa,跟立方氮化硼复合片(PcBN)硬度相当。文章对复合材料内部残余应力及断裂韧性进行了分析。对抛光的样品进行了X射线衍射和扫描电镜、透射电镜分析。结果表明在此条件下合成的样品具有较好的烧结特性。  相似文献   

20.
杨君刚  杨晓琳  韩茜 《硅酸盐通报》2015,34(6):1715-1719
本文分别以TiO2和MgO纳米粉体为烧结助剂,采用微波烧结技术制备了3Y-TZP/Al2O3复相陶瓷.研究了烧结助剂含量对材料相组成、致密化及力学性能的影响,通过XRD分析了复相陶瓷中t-ZrO2相的相对量变化,并采用SEM观察了弯曲断裂断口形貌.结果表明:随烧结助剂添加量的增加,微波烧结复相陶瓷的致密度、硬度和弯曲强度均有所增加,均优于传统烧结性能,陶瓷颗粒更细.烧结助剂添加量为0.2wt% MgO、0.4wt% TiO2,在1300℃微波烧结30 min时试样的致密度为98.1%,显微硬度和抗弯强度分别达18.9 GPa和626 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号