首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the minimal-cost control of the modified activated sludge process with varying level of wastewater in the aerator tank. The model-based adaptive controller of the effluent substrate concentration, basing on the substrate consumption rate and manipulating the effluent flow rate outcoming from the aerator tank, is proposed and its performance is compared with conventional PI controller and open loop behavior. Since the substrate consumption rate is not measurable on-line, the estimation procedure on the basis of the least-square method is suggested. Finally, it is proved that cooperation of the DO concentration controller with the adaptive controller of the effluent substrate concentration allows the process to be operated at minimum costs (low consumption of aeration energy).  相似文献   

2.
This paper presents the theoretical basis and the main results obtained during the development and full-scale experimental validation of the new supervisory control strategy designed for the Galindo-Bilbao wastewater treatment plant (WWTP). The different phases of the project have been carried out over the last 8 years, combining model simulations, pilot-plant experimentation and full-scale validation. The final control strategy combines three complementary control loops to optimise the nitrogen removal in pre-denitrifying activated sludge plants. The first controller was designed to maintain the average concentration of the ammonia in the effluent via the automatic selection of the most appropriate DO set point in the aerobic reactors. The second control loop optimises the use of the denitrification potential and finally, the third control loop maintains the selected amount of biomass in the biological reactors by automatic manipulation of the wastage rate. Mobile-averaged windows have been implemented to incorporate commonly used averaged values in the control objectives. The performance of the controllers has been successfully assessed through the full-scale experimental validation in one of the lines of the WWTP.  相似文献   

3.
In the paper three linear aeration controllers that can be easily implemented are presented and evaluated on the activated sludge process pilot plant. Controllers differ according to the information that is used about the process, which can be oxygen in the last aerobic reactor, ammonia in the last aerobic reactor and ammonia in the influent. The aeration controllers that are addressed are: oxygen cascade PI controller, ammonia cascade PI controller and ammonia feedforward-cascade PI controller. Experiments show that, in comparison with the oxygen cascade PI controller, the ammonia cascade PI controller allows better control of effluent ammonia and airflow savings of around 23%, while the ammonia feedforward-cascade PI controller gives the best reduction of ammonia peaks and can save up to 45% of the airflow.  相似文献   

4.
Because biological wastewater treatment plants (WWTPs) involve a long time-delay and various disturbances, in general, skilled operators manually control the plant based on empirical knowledge. And operators usually diagnose the plant using similar cases experienced in the past. For the effective management of the plant, system automation has to be accomplished based upon operating recipes. This paper introduces automatic control and diagnosis based upon the operator's knowledge. Fuzzy logic was employed to design this knowledge-based controller because fuzzy logic can convert the linguistic information to rules. The controller can manage the influent and external carbon in considering the loading rate. The input of the controller is not the loading rate but the dissolved oxygen (DO) lag-time, which has a strong relation to the loading rate. This approach can replace an expensive sensor, which measures the loading rate and ammonia concentration in the reactor, with a cheaper DO sensor. The proposed controller can assure optimal operation and prevent the over-feeding problem. Case-based diagnosis was achieved by the analysis of profile patterns collected from the past. A new test profile was diagnosed by comparing it with template patterns containing normal and abnormal cases. The proposed control and diagnostic system will guarantee the effective and stable operation of WWTPs.  相似文献   

5.
The optimization of the Benchmark Simulation Model 1 (BSM1) through a multi objective genetic algorithm (MOGA) is studied in this paper. First, the optimization of the set points of the two Proportional Integral (PI) controllers proposed in BSM1 is performed. Then, a new controller layout composed of three PI controllers is proposed and the set points are also optimized. Among all performance indexes proposed in BSM1, only the effluent quality and the energy consumption for pumping and aeration were taken into account in both optimization problems. Since these two objectives are conflicting, the use of the MOGA allows in both cases a direct visualization of the possible trade-offs through a Pareto curve. These two case studies showed the feasibility of such optimizations even when dealing with computing intensive model like the full scale waste water treatment plant (WWTP) model.  相似文献   

6.
Hydroponic system for the treatment of anaerobic liquid   总被引:2,自引:0,他引:2  
The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.  相似文献   

7.
Due to its efficiency and low capital demands, chlorination has been widely used for disinfection in many wastewater treatment plants. Since the oxidation power of free chlorine is bigger than combined chlorines which are formed from the reaction between chlorine and reducing agents in water (especially, NH4+ and organic nitrogen), for effective disinfection, excess amount of chlorine is added until all the reducing agents are oxidized and free chlorine is available. After chlorination, chlorine residues in wastewater are usually reduced with SO2 or sulfites before the treated wastewater is discharged, since they are toxic to aquatic life. Addition of excess amount of SO2 or sulfite should be avoided. Otherwise, they consume dissolved oxygen in a river or stream and may have adverse impact on the aquatic life. Determination of wastewater chlorine demand and of sulfite dosages for dechlorination has been a challenge to WWTP operators, due to the dynamic characteristics of wastewater. Recently, a new ORP/pH based approach to determine chlorine demand and sulfite dosage was proposed. The method utilizes significant points occurring on the pH and ORP profiles during chlorination and dechlorination titrations. In this study, the proposed automatic titration system has been implemented into a control system to optimize chlorine and sulfite doses for a pilot scale chlorination/dechlorination system. In short, the disinfection system with the pH/ORP based controller showed very successful results; complete inactivation of total coliforms, and almost zero residual chlorines and high DO in its effluent.  相似文献   

8.
Pilot scale experiments were performed to evaluate the potential of nitrite type nitrification process with an airlift reactor and granular biomass. Initially, oxygen limitation was used as the main control parameter for accumulating nitrite in the effluent. After 30 d operation, the maximum nitrite conversion rate reached 2.5 kgNO2-N m(-3) d(-1), average diameter of the granule was 0.7 mm. Nitrite type reaction continued over 100 d, but nitrate formation increased after 150 d of operation. Once nitrate formation increased, oxygen limitation could not eliminate nitrite oxidising bacteria from granule. To overcome nitrate formation, laboratory scale batch experiments were conducted and it revealed a high concentration of inorganic carbon which had a significant effect on nitrite accumulation. Following this new concept, inorganic carbon was fed to the pilot scale reactor by changing pH adjustment reagent from NaOH to Na2CO3 and nitrite accumulation was recovered successfully without changing DO concentration. These results show that a high concentration of inorganic carbon is one of the control parameters for accumulating nitrite in biofilm nitrification system.  相似文献   

9.
刘瑞斌  皇甫慧君  李南 《给水排水》2006,32(10):103-105
介绍了炼油废水采用曝气生物滤池(BAF)处理工艺的工作原理,并对工艺控制系统的特点及要求作了简要介绍,控制系统采用SIMATICS7-300可编程控制器实现炼油废水处理工艺设备的控制。具体介绍了控制系统的结构、任务分配及实现、控制方式和程序设计思路,对阀类、曝气机、鼓风机和水泵采用了顺序控制、时限控制和条件控制相结合的控制原则。  相似文献   

10.
The paper presents an efficient and simple model-based method of on-line estimation of respiration from the current values of dissolved oxygen concentration and airflow signals. Fast estimation of respiration is important because respiration appears as the most important disturbance signal in the control of dissolved oxygen concentration, and could therefore be used for improving control efficiency. A parameter scheduling PI (proportional and integral) control scheme is proposed, where the estimated respiration signal is used for scheduling of the PI controller parameters, by using local linearization of the process dynamics. The performance of the scheduling controller is compared to a conventional PI controller in simulation using the COST simulation benchmark, and experimentally on an activated sludge process pilot plant.  相似文献   

11.
氧化沟工艺污泥膨胀及出水水质影响因素的研究   总被引:1,自引:0,他引:1  
针对丝状菌污泥膨胀造成改良式氧化沟工艺处理城市生活污水超标的问题,通过分析进水水质、溶解氧、温度、污泥膨胀指数、出水水质变化的关系,探讨了导致丝状菌膨胀的主要限制因子以及出水水质的变化.研究结果表明,此工艺中进水BOD5、CODcr、TP浓度和pH值变化不是导致污泥膨胀的原因,进水TN和环境温度对污泥膨胀略有影响,DO、NH3-N变化与SVI有较强的相关性,DO和NH3-N越高,SVI越低.  相似文献   

12.
Dissolved air flotation (DAF) incorporating filtration (DAFF) is used at the Bolivar wastewater treatment plant (WWTP) to polish lagoon effluent for reuse. Elevated algal populations are frequently experienced and can lead to increased coagulant requirements and process control issues. Streaming current detectors (SCDs) and a charge demand analyser (CDA) were used to monitor the full-scale plant. This was followed by an optimisation study using a pilot plant with a CDA. It was found that the normal operational charge demand range for DAF at Bolivar was between -46 and -40 μeq L(-1). Decreasing the pH of coagulation reduced coagulant consumption and facilitated more sensitive CDA responses to changes in alum dose.  相似文献   

13.
The operation of an activated sludge process at a paper mill (AIPM) in Hedera, Israel, was often characterized by disturbances. As part of a research and development project, a study on new biological treatment was initiated. The study included the operation of three pilot units: a. anaerobic treatment by upflow anaerobic sludge blanket (UASB); b. aerobic treatment by two pilot units including activated sludge and membrane bioreactor (MBR), which have been operated in parallel for comparison reasons. The pilot plant working on anaerobic treatment performed COD reduction from 2,365 to 755 mg/L, expressed as average values. Based on the pilot study, a full scale anaerobic treatment system has been erected. During a period of 100 days, after achieving steady state, the MBR system provided steady operation performance, while the activated sludge produced effluent characterized by oscillatory qualities. The following results, based on average values, indicate much lower suspended solids concentrations in the MBR effluent, 2.5 mg/L, as compared to 25 mg/L in the activated sludge. The ability to develop and maintain a concentration of over 11,000 mg/L of mixed liquor volatile suspended solids in the MBR enabled an intensive bioprocess at relatively high cell residence time. This study demonstrates that the anaerobic process, followed by aerobic MBR can provide effluent of high quality which can be considered for economic reuse in the paper mill industry.  相似文献   

14.
On-site greywater treatment and reuse in multi-storey buildings.   总被引:1,自引:0,他引:1  
The paper presents a study of a pilot plant treating light greywater for seven flats. The pilot plant combines biological treatment (RBC) with physicochemical treatment (sand filtration and disinfection). The pilot plant produced effluent of excellent quality, meeting the urban reuse quality regulations, and was very efficient in TSS turbidity and BOD removal: 82%, 98% and 96%, respectively. COD removal was somewhat lower (70-75%) indicating that the greywater may contain slowly-biodegradable organics. The RBC (attached growth biological system) was able to retain most of the solids as a result of bioflocculation; further it was proven to have very stable and reliable performance. Faecal coliforms and heterotrophic reductions were very high (100% and 99.99%, respectively) producing effluent that also met drinking water standards. The combination of low organic matter, nutrients and microbial indicators reduces the regrowth and fouling potentials in the reuse system, thus ensuring safe reuse of the treated greywater for toilet flushing.  相似文献   

15.
A pilot plant sequencing batch reactor (SBR) was applied in a wastewater treatment plant treating urban wastewater focused on carbon and nitrogen removal. From an initial predefined step-feed cycle definition, the evolution of the on-line monitored pH and calculated oxygen uptake rate (OUR) were analysed in terms of knowledge extraction. First, the aerobic phases of the SBR cycle were operated using an On/Off dissolved oxygen (DO) control strategy that concluded with a sinusoidal pH profile that made detecting the "ammonia valley" difficult. After changing to fuzzy logic control of the dissolved oxygen and by adding an air flow meter to the pilot plant, the pH evolution and on-line calculated OUR showed a clearer trend during the aerobic phases. Finally, a proposed algorithm for adjusting the aerobic phases of the SBR for carbon and ammonia removal is presented and discussed.  相似文献   

16.
A full-cyclic automatic control strategy for sequencing batch reactors (SBR) was proposed using only common sensors such as ORP, DO and pH. The main objective was to develop a generally applicable and robust control strategy. To accomplish this, various control schemes found in the literature or suggested by authors were examined at diverse ammonia loads and SCOD/NH4(+)-N ratios. Advantages and constraints of each scheme were discussed and compared. Ammonia load was estimated with DO lag time during the aerobic stage, and then the influent pump was manipulated to meet the desired load at the next anoxic stage. A partial denitrification scheme was chosen for the anoxic stage period control, to save anoxic time and external carbon. For external carbon dosage control, intermittent feeding at each anoxic stage was concluded to be a suitable scheme. The anoxic stage period could be successfully controlled by the combination of pH increase and DO increase. Every suggested control scheme was incorporated into a full-cyclic control strategy and tested at 0.02, 0.035, 0.08 kg NH4(+)-N/m3/sub-cycle. From the results, it is expected to perform unmanned automatic SBR operation with this strategy.  相似文献   

17.
A pilot study was conducted to test an membrane bioreactor (MBR) process for combined biological and chemical P removal to achieve a very low effluent total phosphorus (TP) concentration of 0.025 mg P/L. With the data from the pilot test, a simulation study was performed to demonstrate that: (1) the pilot system behaviour (effluent quality, MLSS, etc.) can be modelled accurately with an activated sludge model combined with a chemical precipitation model; and (2) with the calibrated model, simulation scenarios can be performed to further understand the pilot MBR process, and provide information for optimizing design and operation when applied at full-scale. Results from the pilot test indicated that the system could achieve very low effluent TP concentration through biological P removal with a limited chemical addition, and chemical addition to remove P to very low level did not affect other biological processes, i.e., organic and nitrogen removal. Simulation studies indicate that the process behaviour can be modelled accurately with an activated sludge model combined with a chemical precipitation model, and the calibrated model can be used to provide information to optimize system design and operation, e.g., chemical addition control under dynamic loading conditions is important for maintaining biological P removal.  相似文献   

18.
The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the programmable logic controller and human-machine interface. In order to monitor its status, the real-time data was transferred from the remote station to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from laboratory experiments, the quality of treated wastewater with chemical coagulation process followed by sand filtration was enough to be utilized again if a final disinfection step is included.  相似文献   

19.
With a series of buffer tank, activated pre-clarifier (SBR) and planted soil filters, it is possible to get a stable degradation and good effluent values in the case of unsteady inflow and changing concentrations. In the process presented here the activated pre-clarifier is working as a denitrification tank and the soil filter as a nitrification reactor. An automatic control manages the storm-water runoff, the water-recirculation returns the nitrate and provides a minimal feed. Experiences with this plant from 1999 to 2005 are given in this paper, research has been done in the project "Planted soil filters as a Biotechnological Process", founded by the German Federal Environment Foundation (DBU). A full scale pilot plant was built to treat wastewater from composting sides, with a 42 m3 SBR and a bed area of 2 x 550 m2 of the planted soil filters. Now, after six years of operation, the results are still satisfactory. Besides this pilot plant, landfill leakage and municipal wastewater have been treated in a technical scale plant with the same process in an 80 L SBR and 0.75 m2 vertical flow soil filter with good results.  相似文献   

20.
The Biofiltration process in wastewater treatment combines filtration and biological processes in one reactor. In Europe it is meanwhile an accepted technology in advanced wastewater treatment, whenever space is scarce and a virtually suspended solids-free effluent is demanded. Although more than 500 plants are in operation world-wide there is still a lack of published operational experiences to help planners and operators to identify potentials for optimisation, e.g. energy consumption or the vulnerability against peakloads. Examples from pilot trials are given how the nitrification and denitrification can be optimised. Nitrification can be quickly increased by adjusting DO content of the water. Furthermore carrier materials like zeolites can store surplus ammonia during peak loads and release afterwards. Pre-denitrification in biofilters is normally limited by the amount of easily degradable organic substrate, resulting in relatively high requirements for external carbon. The combination of pre-DN, N and post-DN filters is much more advisable for most municipal wastewaters, because the recycle rate can be reduced and external carbon can be saved. Exemplarily it is shown for a full scale preanoxic-DN/N/postanoxic-DN plant of 130,000 p.e. how 15% energy could be saved by optimising internal recycling and some control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号