首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
In Halmstad, Sweden great efforts have been made during the 1990's to improve the functionality and to reduce the environmental impact of the sewer system and the wastewater treatment plant The investment and rehabilitation program includes to a great extent an effective use of existing resources. The wastewater treatment plant is reconstructed to meet increased nutrient removal demands. A five year rehabilitation plan for the sewer system is under completion, where the measures mainly are motivated by the aim to reduce the combined sewer overflow volumes and to minimize the risk of local flooding. It was soon realized that an integrated use of storage volumes at the wastewater treatment plant and within the sewer system could improve the general conditions for the treatment at the plant. To implement this strategy a real time control system was introduced by installing controllable weirs and flow control devices in the main sewer. The article describes the background of the sewerage master plan, how the upgrading work has been carried out by means of simulations and measurement, gives examples of some expected potential benefits, and outlines plans for the future.  相似文献   

2.
The objective of the present study is the estimation of the potential benefits of sewer pipe rehabilitation for the performance of the drainage system and the wastewater treatment plant (WWTP) as well as for the receiving water quality. The relation of sewer system status and the infiltration rate is assessed based on statistical analysis of 470 km of CCTV (Closed Circuit Television) inspected sewers of the city of Dresden. The potential reduction of infiltration rates and the consequent performance improvements of the urban wastewater system are simulated as a function of rehabilitation activities in the network. The integrated model is applied to an artificial system with input from a real sewer network. In this paper, the general design of the integrated model and its data requirements are presented. For an exemplary study, the consequences of the simulations are discussed with respect to the prioritisation of rehabilitation activities in the network.  相似文献   

3.
This paper described manage sewer in-line storage control for the city of Drammen, Norway. The purpose of the control is to use the free space of the pipes to reduce overflow at the wastewater treatment plant (WWTP). This study combined the powerful sides of the hydraulic model and neural networks. A detailed hydraulic model was developed to identify which part of the sewer system have more free space. Subsequently, the effectiveness of the proposed control solution was tested. Simulation results showed that intentionally control sewer with free space could significantly reduce overflow at the WWTP. At last, in order to enhance better decision making and give enough response time for the proposed control solution, Recurrent Neural Network (RNN) was employed to forecast flow. Three RNN architectures, namely Elman, NARX (nonlinear autoregressive network with exogenous inputs) and a novel architecture of neural networks, LSTM (Long Short-Term Memory), were compared. The LSTM exhibits the superior capability for time series prediction.  相似文献   

4.
Since treatment plants have been built all over Germany during the last decades, the water quality of receiving streams has been improved remarkably. But there are still a lot of quality problems left, which are caused e.g. by combined sewer overflows (CSO), treatment plant effluents or rainwater discharges from separate sewer systems. At present different efforts are undertaken to control sewer systems in order to improve the operation of urban drainage systems or more generally, design processes. The Emschergenossenschaft and Lippeverband (EG/LV) are carrying out research studies, which are focusing on a minimization of total emissions from sewer systems both from wastewater treatment plant (WWTP) effluents and from CSO. They consider dynamic interactions between rainfall, resultant wastewater, combined sewers, WWTP and receiving streams. Therefore, in an advanced wastewater treatment, a model-based improvement of WWTP operation becomes more and more essential, and consequently a highly qualified operational staff is needed. Some aspects of the current research studies are presented in this report. The need and the use of an integrated approach to combine existing model components in order to optimize dynamic management of combined sewer systems (CSS) with a benefit for nature are outlined.  相似文献   

5.
以实现河流水质目标为前提,充分利用河流纳污能力,根据不同环境与气候条件调节污水处理厂运行状况和排水管网的污水排放量,可有效保护河流生态质量。基于城市污水处理系统集成仿真平台,提出了4种以河流水质为目标的城市污水处理系统集成控制方案,通过对排水管网和污水处理厂的协调控制,实现了河流水质的改善。仿真结果验证了集成控制策略的有效性。  相似文献   

6.
The main goal of the Water Framework Directive is to achieve good chemical and ecological status of water bodies by 2015. The implementation of integrated river basin management, including sewer systems, wastewater treatment plants and receiving water bodies, is essential to accomplishing this objective. Integrated management is complex and therefore the implementation of control systems and the development of decision support systems are needed to facilitate the work of urban wastewater system (UWS) managers. Within this context, the objective of this paper is to apply integrated modelling of an UWS to simulate and analyse the behaviour of the 'Congost' UWS in Spain, and to optimize its performance against different types of perturbations. This analysis results in optimal operating set-points for each perturbation, improves river water quality, minimizes combined sewer overflows and optimizes flow lamination from storm water tanks. This is achieved by running Monte Carlo simulations and applying global sensitivity analysis. The set-points will become part of the knowledge base composed of a set of IF-THEN rules of the environmental decision support system being developed for this case study.  相似文献   

7.
For a long time people have questioned what the "best" sewer system is for limiting the pollution load released into the receiving waters. In this paper the traditional separate and combined sewer systems are compared using a pollution load balance. The investigation is based on measured concentration data for a range of pollutant parameters in the sewer from the new database "ATV-DVWK Datenpool 2001". The approach also accounted for the wastewater treatment plant outflow which contributes to the total pollutant load considerably. In spite of a number of neglected effects, the results show that the separate system is superior to the combined for some parameters only, such as nutrients, whereas for other parameters, e.g. heavy metals and COD, the combined system yields less total loads. Any uncritical preference of the separate system as a particularly advantageous solution is thus questionable. Individual investigations case by case are recommended.  相似文献   

8.
9.
Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified.  相似文献   

10.
雨污兼合的排水系统体制探讨   总被引:6,自引:0,他引:6  
唐鸿亮 《给水排水》2005,31(3):45-50
城市排水系统体制的选择,无论对于城市新区建设还是对于旧城改造,都是个现实问题。分析了雨污分流实施的困难、问题和原因,探索了雨污兼合系统。结合实际情况、当地自然条件、受纳水体环境要求和现有设施情况、资金因素、管理水平、动态发展等因素,实事求是,科学地确定无锡市排水体制。雨污兼合系统是防洪与排水相结合、市政排水与建筑排水相衔接、污水与雨水有机统一的较经济、现实的排水系统。  相似文献   

11.
Anaerobic wastewater treatment has become a widely used method for wastewater depuration, and has been applied in a wide range of situations, from urban wastewater to highly toxic industrial wastewater. Particularly it has been successfully applied to the treatment of the beverage industries effluents. To avoid the destabilization of the system a monitoring diagnosis and control system of the depuration processes is necessary. The cost of this system is an important issue, that depends on the number of parameters that must be controlled for an adequate performance of a wastewater plant control system. This work shows how the classic statistical classification techniques can be applied to determine the number variables that must be monitored to achieve an adequate performance of anaerobic UASB-UAF hybrid Pilot Plant monitoring and control system. The obtained results had not been unique, so different combinations of variables can be selected for a good wastewater treatment process control. Economic or technical criteria may be considered to determine the final variables set in each particular situation.  相似文献   

12.
Confronted with the problem of overflows from its combined sewer system into the River Seine during rainfall, the Department of the Hauts de Seine (which covers some thirty urban districts on the west side of Paris) has decided to implement the real time control of its sewer system. To initiate this plan, as the town of Boulogne Billancourt seemed to be a particularly favourable site for the use of such techniques, a project to control its sewer system in real time has been implemented within the scope of the SPRINT 226 programme financed by the European Community.The preliminary studies, based on a MOUSE computer model of the sewer system, showed that the real time control of the sewer network under study had a high potential benefit, since it would allow an 80% reduction of the volumes of waste water discharged into the Seine annually in the study zone. Following on from these encouraging results, the installation of a complete real time control system was set in hand. The system, at present undergoing testing and evaluation, consists principally of a MOUSE ON LINE real time model and a system for forecasting rainfall by means of radar images.  相似文献   

13.
When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.  相似文献   

14.
In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.  相似文献   

15.
River Panke (Berlin, Germany) suffers from hydraulic peak loads and pollutant loads from separate sewers and combined sewer overflows (CSOs). Pumping the wastewater through long pressure pipes causes extreme peak loads to the wastewater treatment plant (WWTP) during stormwater events. In order to find a good solution, it is essential not to decide on one approach at the beginning, but to evaluate a number of different approaches. For this reason, an integrated simulation study is carried out, assessing the potentials of real time control (RTC), stormwater infiltration, storage and urine separation. Criteria for the assessment are derived and multi-criteria analysis is applied. Despite spatial limitations, infiltration has the highest potential and is very effective with respect to both overflows and the WWTP. Due to a high percentage of separate systems, urine separation has a similar potential and causes the strongest benefits at the WWTP. Unconventional control strategies can lead to significant improvement (comparable to infiltrating the water from approximately 10% of the sealed area).  相似文献   

16.
Selected organic pollutants are classified based on an intensive literature survey. Two wastewater parameters (COD and ammonium) and six selected organic pollutants (polycyclic aromatic hydrocarbons (PAH), diethylhexylphthalate (DEHP), estradiol (E2), ethinylestradiol (EE2), ethylenediamine tetraacetic acid (EDTA) and nitrilo triaceticacid (NTA)) are specified. As a result, for the first time representative concentrations in dry weather flow, surface runoff and effluent of wastewater treatment plants (WWTPs) in combined sewer systems (CSS) are stated. The second part of the paper presents a first estimation of main emission out of a combined sewer system and possible receiving water impacts in terms of (1) annual discharged loads calculated by pollution load simulations in a hypothetical catchment and (2) concentrations calculated in combined sewer overflows (CSO) discharges and resulting receiving water concentrations.  相似文献   

17.
On-line measurements of pollutants in the wastewater combined with grey-box modelling are used to estimate the amount of deposits in the sewer system. The pollutant mass flow at the wastewater treatment plant is found to consist of a diurnal profile minus the deposited amount of pollutants. The diurnal profile is found to be a second order harmonic function and the pollutants deposited in the sewer are identified using first order ordinary differential equations.  相似文献   

18.
TEMPEST is a new interactive simulation program for the estimation of the wastewater temperature in sewers. Intuitive graphical user interfaces assist the user in managing data, performing calculations and plotting results. The program calculates the dynamics and longitudinal spatial profiles of the wastewater temperature in sewer lines. Interactions between wastewater, sewer air and surrounding soil are modeled in TEMPEST by mass balance equations, rate expressions found in the literature and a new empirical model of the airflow in the sewer. TEMPEST was developed as a tool which can be applied in practice, i.e., it requires as few input data as possible. These data include the upstream wastewater discharge and temperature, geometric and hydraulic parameters of the sewer, material properties of the sewer pipe and surrounding soil, ambient conditions, and estimates of the capacity of openings for air exchange between sewer and environment. Based on a case study it is shown how TEMPEST can be applied to estimate the decrease of the downstream wastewater temperature caused by heat recovery from the sewer. Because the efficiency of nitrification strongly depends on the wastewater temperature, this application is of practical relevance for situations in which the sewer ends at a nitrifying wastewater treatment plant.  相似文献   

19.
A prerequisite for an integrated control of sewer and wastewater treatment plant (WWTP) is a capacity driven inflow control to WWTP. This requires reliable information about the current status of WWTP operation and its behaviour on varying hydraulic, COD and nutrient loads. So far most of the proposed control strategies are based on hypothetical modelling studies. In this paper the behaviour of three large WWTPs on increased storm water loads is analysed based on online measurements of several years. In all cases the main limiting factors for an increase of load were the sedimentation processes in the secondary clarifier and the nitrification capacity. In one case study predictive control strategies have been developed observing these processes which are backboned by effluent control. Tests using an integrated model of sewer and WWTP demonstrate that inflow control on emission load varies significantly with rain intensity.  相似文献   

20.
Today's planning standards deal with the individual urban drainage components (sewer system, wastewater treatment plant and receiving water) separately, i.e. they are often designed and operated as single components. As opposed to this, an integral handling considers the drainage components jointly. This novel approach allows a holistic and more sustainable planning of urban drainage systems. This paper presents an integrated modelling concept. The aim is to analyse fluxes through the total wastewater system and to integrate pollution-based control in the upstream direction, that is, e.g., managing the combined water retention tanks as a function of state variables in the WWTP or the receiving water. All models of the different subsystems are based on the Activated Sludge Model (ASM) concept of IWA, including River Water Quality Model No. 1 (RWOM). Simulations can be done in truly parallel mode using the simulation environment SIMBA. The integrated modelling concept is applied to the river Dhuenn and the urban wastewater system of the municipality of Odenthal (Germany). An optimised operation of the system using RTC proves to be a very effective measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号