首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用真空电弧熔炼和退火处理制备了A5B19型R0.45Y0.55Ni3.5Mn0.2Al0.1(R=Y,La,Pr,Nd,Sm)储氢合金,采用XRD、SEM-EDS与电化学方法系统分析了镧系稀土元素对R-Y-Ni系A5B19型储氢合金微观结构和电化学性能的影响规律.结果表明,退火合金微观组织由Ce5Co19型相、Ce2N...  相似文献   

2.
以La0.6R0.2Mg0.2Ni2.8Co0.2Al0.2Mn0.1(R=La、Ce、Pr、Nd、Y)合金为研究对象,研究稀土元素R部分替代La后对合金相结构和相组成及电化学性能的影响。X射线衍射(XRD)和显微电子探针(EPMA)方法分析结果表明,合金La0.8Mg0.2Ni2.8Co0.2Al0.2Mn0.1退火组织主要由Ce2Ni7型相(或Gd2Co7型)、PuNi3型相和CaCu5型相组成;Pr、Ce、Nd元素的替代对合金的相组成没有明显影响,而Y元素替代使合金中CaCu5型相明显减少,Ce2Ni7型(或Gd2Co7型)相显著增加,其相丰度达到79.03%。Y元素替代时合金中Gd2Co7型相基本消失。电化学测试和分析表明,稀土元素R替代La后对合金电极活化性能影响不大,其中Pr、Nd、Y部分替代La在一定程度上提高了合金的最大放电容量,而元素Y替代时合金电极容量最高达到392.6mAh/g;Y元素部分替代La使合金电极的循环稳定性得到明显提高,S100达到90.3%。  相似文献   

3.
系统研究了La0.8-xPrxMg0.2Ni3.8和La0.8-xPrxMg0.2Ni3.2Al0.2Co0.4(x=0, 0.15, 0.3, 0.4)两组储氢合金的相结构与电化学性能。相结构分析表明,合金主要由Pr5Co19、Ce5Co19、CaCu5型物相组成。随着x的增加,合金中A5B19(Pr5Co19+Ce5Co19)型物相逐渐增多,同时各物相的晶胞参数(a, c)和晶胞体积(v)均减小。Al元素的加入有利于CaCu5型物相的形成。电化学测试表明, A5B19型相合金具有较好的电化学循环稳定性,Al、Co元素的加入有利于A5B19型相合金电极的电化学循环稳定性  相似文献   

4.
对La Ni3.8Co0.6Mn0.3M0.3(M=Ni,Al,Cu)储氢合金在238,273,303和323 K温度下的结构和电化学性能进行了一系列的实验研究。A,B,C分别代表La Ni4.1Co0.6Mn0.3(Ni替代),La Ni3.8Co0.6Mn0.3Al0.3(Al替代)和La Ni3.8Co0.6Mn0.3Cu0.3(Cu替代)3种储氢合金,通过X射线衍射仪分别对样品A,B,C的结构进行了研究,对样品A,B,C合金粉末制成的电极进行了模拟电池测试。结果证实,制备的合金均由具有Ca Cu5型六方晶格结构的La Ni5相构成。3种合金中,Cu替代的合金电极低温性能得到改善,Al替代的合金电极高温放电能力得到提高。交流阻抗图谱分析表明,B合金电极样品的高温放电能力提高是由于合金电极表面形成的致密氧化膜层减缓了合金腐蚀所致,样品B,C的高倍率性能衰退是由于电极表面的充放转移反应和氢原子扩散速率下降造成的,而样品C的优良低温性能则是合金电极表面高的充放电转移反应速率所致。  相似文献   

5.
研究了Mn替代Ni对La2Mg0.9Al0.1Ni7.5-xCo1.5Mnx(x=0,0.3,0.6,0.9)贮氢合金相结构和电化学性能的影响。XRDRietveld全谱拟合分析表明:Mn替代改变了合金的物相组成和物相的丰度。LaNi3相消失,αLa2Ni7相丰度的变化表现为先增加(x=0,0.3)后减少(x=0.6,0.9),LaMgNi4相和La5Ni19相的丰度则随合金中Mn含量x的增加而增加。Mn替代Ni降低了合金的贮氢容量、最大电化学放电容量和活化性能,La2Mg0.9Al0.1Ni7.2Co1.5Mn0.3合金电极表现出最好的电化学循环稳定性,合金的高倍率放电性能随Mn含量的增加降低,这归因于交换电流密度(I0)和氢扩散系数(D)的降低。  相似文献   

6.
采用真空电弧熔炼及热处理的方法制备La0.7Y0.3Ni3.4-ХMnХAl0.1(Х=0~0.5)合金,通过XRD、SEM、EDS和电化学测试等方法,系统地研究了Mn替代Ni对合金微观组织、储氢和电化学性能的影响规律。结果表明,退火合金微观组织由主相Ce2Ni7型相和杂相PuNi3型、CeNi3型及Ce5Co19型相组成,Ce2Ni7型主相的丰度随Mn含量增加呈先增大后减小变化规律。当Х=0.2时,主相的丰度达到最大值89.03%。增加Mn的含量有助于缓解合金的氢致非晶化倾向。随着Mn含量的增加,合金电极的放电容量逐渐升高,而充放电循环稳定性却逐渐降低,合金电极的最大放电容量和最佳循环稳定性分别为308.6mAh/g与95.09%。合金电极的反应动力学分析结果表明,氢原子在合金体相中的扩散为合金电极高倍率放电性能的动力学控制步骤。  相似文献   

7.
对LaNi3.8Co0.6Mn0.3M0.3 (M=Ni, Al, Cu)储氢合金在238,273,303和323 K温度下的结构和电化学性能进行了一系列的实验研究。A,B,C分别代表LaNi4.1Co0.6Mn0.3(Ni替代),LaNi3.8Co0.6Mn0.3Al0.3(Al替代)和LaNi3.8Co0.6Mn0.3Cu0.3(Cu替代)3种储氢合金,通过X射线衍射仪分别对样品A,B,C的结构进行了研究,对样品A,B,C合金粉末制成的电极进行了模拟电池测试。结果证实,制备的合金均由具有CaCu5型六方晶格结构的LaNi5相构成。3种合金中,Cu替代的合金电极低温性能得到改善,Al替代的合金电极高温放电能力得到提高。交流阻抗图谱分析表明,B合金电极样品的高温放电能力提高是由于合金电极表面形成的致密氧化膜层减缓了合金腐蚀所致,样品B,C的高倍率性能衰退是由于电极表面的充放转移反应和氢原子扩散速率下降造成的,而样品C的优良低温性能则是合金电极表面高的充放电转移反应速率所致。  相似文献   

8.
采用铸造及退火工艺制备了La0.8-xPrxMg0.2Ni3.35Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4)电极合金。系统研究了Pr的替代对合金的结构与电化学储氢性质的影响,结果表明除少量残余LaNi3相外,铸造及退火合金是由六方Ce2Ni7型(La, Mg)2Ni7相与六方CaCu5型LaNi5相构成的。Pr对La的置换对合金的电化学储氢性质产生明显影响,铸造及退火合金的放电容量和高倍率放电能力随Pr含量的增加先升后降。当Pr含量由0增加至0.4时,铸造及退火合金的100次充放电循环后容积保持率S100从64.96%和72.82%分别增加至77.94%和91.81%  相似文献   

9.
退火对La0.75Mg0.25Ni3.5 Co0.4贮氢合金电化学性能的影响   总被引:1,自引:1,他引:0  
为了改善La-Mg-Ni-Co系合金电极的循环稳定性,对铸态合金La0.75Mg0.25Ni3.5 Co0.4在0.3MPa压力氩气保护下进行不同温度的退火(1123,1223和1323K),保温时间均为10h.研究了退火温度对合金的电化学性能的影响.X射线衍射(XRD)分析结果表明,铸态及1123K温度退火后合金主要由LaNi5,(La,Mg)2(Ni,Co)7相以及少量LaNi2相组成;退火温度为1223和1323K时,合金中LaNi2相消失,合金主要由LaNi5,(La,Mg)2(Ni,Co)7及(La,Mg)(Ni,Co)3相组成.随退火温度升高,最大放电容量从341.2mAh/g增加365.8mAh/g;循环稳定性得到改善,100次充放电循环后容量保持率从铸态合金的58.63%提高到1323K时的72.91%.  相似文献   

10.
研究了少量Al替代Mg(x=0.1)对La2Mg1-xAlxNi7.5Co1.5贮氢合金电化学循环稳定性的影响.经过充放电循环后,La2Mg1-xAlxNi7.5Co1.5(x=0.0,0.1)合金中的LaNi3相和αLa2Ni7相仍然保持PuNi3型结构和Ce2Ni7型结构,没有发生变化,此外,在这2种合金中出现少量新的物相La(OH)3,Mg(OH)2和Ni.LaNi3相和αLa2Ni7相吸氢形成氢化物后也保持PuNi3型结构和Ce2Ni7型结构.La2MgNi7.5Co1.5吸氢后,LaNi3相和αLa2Ni7相晶胞均呈各向异性膨胀,但LaNi3相的各向异性膨胀程度及晶胞体积膨胀率明显大于αLa2Ni7相.相比La2MgNi7.5Co1.5氢化物,Al替代Mg对La2Mg0.9Al0.1Ni7.5Co1.5氢化物中的αLa2Ni7相吸氢体积膨胀的抑制作用很小,但Al替代Mg使该氢化物中LaNi3相的c轴膨胀率和晶胞体积v的膨胀率均明显降低.电化学吸放氢循环后合金的粒径变化及形貌观察表明,La2Mg0.9A10.1Ni7.5Co1.5合金的抗粉化能力优于La2MgNi7.5Co1.5合金,这是Al替代Mg改善La2MgNi7.5Co1.5合金电极电化学循环稳定性的重要原因.  相似文献   

11.
研究设计了La1.5Mg0.5Ni7.0(Ti Ni3)0.1储氢合金的成分,用高频感应熔炼炉熔炼了该合金,将铸态合金在真空管式炉中采用充入氩气气氛900℃退火处理,分别保温1、2、5、12 h后随炉冷却。对该合金进行XRD测试并用Rietveld方法拟合分析。结果表明,铸态和退火合金均由Ce2Ni7和Gd2Co7型的(La,Mg)2Ni7相以及La Ni5相组成。随着退火时间的增加,合金主相由(La,Mg)2Ni7相变为La Ni5相。同时,含有Mg元素的Ce2Ni7、Gd2Co7型相的晶胞体积呈减少趋势,而La Ni5相晶胞体积变化不大。  相似文献   

12.
为了研究不同退火方式对La0.75Mg0.25Ni3.44Co0.2Al0.03Ti0.03铸态合金的电化学性能影响,设计最终退火温度为1223K,并采用不同保温程序对合金进行退火处理。X射线衍射(XRD)与扫描电镜(SEM)分析一段、两段保温法退火后合金的结构与性能结果表明,铸态及退火后合金由LaNi5,(La,Mg)2(Ni,Co,Al)7相以及少量LaNi2、TiNi3相组成,且退火后合金中(La,Mg)(Ni,Co,Al)3相出现。前者微观组织较后者均匀,并且前者的放电容量、放电效率好于后者。一段保温法更有利于改善合金的循环稳定性。  相似文献   

13.
采用感应熔铸+退火处理及快速凝固方法制备了La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金。系统研究了快速凝固对合金的相结构、微观组织及电化学性能的影响。XRD分析表明,随着冷却速率的增加,La2Mg0.9Ni7.5Co1.5Al0.1合金的相组成发生了明显变化。退火合金由αLa2Ni7主相(Ce2Ni7型结构)和少量LaNi3相(PuNi3型结构)组成。随着冷却速率的增加,合金中出现LaNi5相(CaCu5型结构)和LaMgNi4(MgCu4Sn型结构)相,且新相的相丰度增加,aLa2Ni7相和LaNi3相的丰度减少。EPMA分析表明,快速凝固方法制备的La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金为柱状晶组织且晶粒细小。合金电极的电化学测试表明,冷却速率对合金的活化性能影响不大。随冷却速率的增加,合金的最大放电容量减少、高倍率放电性能下降。在较低的冷却速率下(5m/s),合金电极的循环稳定性改善不明显,而随着凝固速度的进一步增加(20m/s),合金电极表现出较好的循环稳定性。  相似文献   

14.
Al对La—Mg-Ni系贮氢合金电极电化学性能的影响   总被引:4,自引:0,他引:4  
采用固相扩散法制备La0.7Mg0.3Ni3.5-xAlx(x=0,0.1,0.3,0.7,1.0)和La0.7Mg0.3Ni2.8Co0.7-xAlx(x=0,0.1,0.2,0.3,0.4)贮氧合金,采用X射线衍射、能谱分析及循环伏安等方法分析含金的相结构和电极电化学性能,研究元素Al替代对合金电化学性能的影响.结果表明:合金由LaNi5、La2Ni7和LaNi3三相组成,随着Al替代量的增加,La2Ni7相晶胞逐渐膨胀,LaNi5相大量减少,LaNi3相增加,La2Ni7相有利于合金电化学性能的提高,然而过高的Al含量会对合金的放电性能带来不利影响.La0.7Mg0.3Ni3.4Al0.1和La0.7Mg0.3Ni2.8Co0.6Al0.1合金电极的最大放电容量分别为354.5 mA·h/g和373.1 mA·h/g.循环伏安测试显示较明显的氧化峰和还原峰,且峰电位差较小,反映合金电极较好的吸放氢反应可逆性.  相似文献   

15.
采用真空电弧熔炼及热处理的方法制备La0.7Y0.3Ni3.4-x MnxAl0.1(x=0~0.5)合金,通过XRD、SEM、EDS和电化学测试等方法,系统地研究了Mn替代Ni对合金微观组织、储氢和电化学性能的影响规律。结果表明,退火合金微观组织由主相Ce2Ni7型相和杂相PuNi3型、CeNi3型及Ce5Co19型相组成,Ce2Ni7型主相的丰度随Mn含量增加呈先增大后减小变化规律。当x=0.2时,主相的丰度达到最大值89.03%。增加Mn的含量有助于缓解合金的氢致非晶化倾向。随着Mn含量的增加,合金电极的放电容量逐渐升高,而充放电循环稳定性却逐渐降低,合金电极的最大放电容量和最佳循环稳定性分别为308.6mAh/g与95.09%。合金电极的反应动力学分析结果表明,氢原子在合金体相中的扩散为合金电极高倍率放电性能的动力学控制步骤。  相似文献   

16.
为了改善 La-Mg-Ni 系 A2B7型电极合金的电化学循环稳定性,用 Pr 部分替代合金中的 La,并用熔体快淬工艺制备了La0.75-xPrxMg0.25Ni3.2Co0.2Al0.1(x = 0, 0.1, 0.2, 0.3, 0.4)电极合金。用 XRD、SEM、TEM 分析了铸态及快淬态合金的微观结构。结果表明,铸态及快淬态合金均具有多相结构,包括 2 个主相(La,Mg)Ni3及 LaNi5和 1 个残余相 LaNi2。熔体快淬导致 LaNi5相增加而(La,Mg)Ni3相减少。电化学测试结果表明,熔体快淬显著地提高合金的电化学循环稳定性。当淬速从 0 m/s (铸态被定义为淬速 0 m/s)增加到 20 m/s 时,x=0 合金 100 次充放循环后的容量保持率从 65.32%增加到 73.97%,x=0.4 合金的容量保持率从 79.36%增加到 93.08%。  相似文献   

17.
采用感应熔炼+退火热处理的方法制备了储氢合金La1.5Mg0.5Ni7.0(TiNi3)0.1;用XRD、SEM和EPMA对合金的相结构和电化学性能进行了研究.结果表明:合金主要由Gd2Co7型和Ce2Ni7型的(La,Mg)2Ni7相和LaNi5相组成,合金退火1 h时第二相呈三维网络状沿主相晶界分布;此时,合金具有最好的电化学循环稳定性.  相似文献   

18.
采用M(M=Sm,Nd,Pr)部分替代La,用合金熔炼及退火的方法制备La0.8–xMxMg0.2Ni3.35Al0.1Si0.05(M=Sm,Nd,Pr;x=0–0.4)电极合金,以提高RE–Mg–Ni系A2B7型贮氢合金的电化学性能。用X射线衍射(XRD)及扫描电子显微镜(SEM)分析合金的相组成和显微结构。结果表明,合金由六方结构Ce2Ni7型的(La,Mg)2Ni7相与六方结构Ca Cu5型的La Ni5相组成。随着M替换量的增加,铸态及退火态合金的放电容量均出现最大值。铸态及退火态合金的循环稳定性均随着M替换量的增加而增加。此外,合金的电化学动力学性能(包括高倍率放电性能、电荷传递速率、极限电流密度、氢扩散系数)均随着M替换量的增加呈现先上升后下降的趋势。  相似文献   

19.
采用真空感应熔炼方法制备了La0.63Gd0.2Mg0.17Ni2.85Co0.3Al0.15和La0.63Gd0.2Mg0.17Ni3..05Co0.3Al0.15贮氢合金,并在氩气气氛中和900℃进行退火处理,通过X射线衍射(XRD)、显微电子探针(EPMA)分析方法和电化学测试分析研究了不同化学计量比对合金微观组织和电化学性能的影响。研究结果表明,该系列合金退火组织主要由Ce2Ni7+Gd2Co7型、Pr5Co19型﹑PuNi3型和CaCu5型相组成,AB3.3中Ce2Ni7+Gd2Co7型相明显比AB3.5减少。电化学测试分析表明,不同的化学计量比对合金电极活化性能影响不大,AB3.5合金的最大放电容量大于AB3.3合金。AB3.5合金的循环稳定性明显高于AB3.3合金,经100次充放电循环后其电极容量保持率S100分别为90.2%和83.7%,其中AB3.5合金具有最好的综合电化学性能。  相似文献   

20.
采用铸造及退火工艺制备了La0.8-x Prx Mg0.2Ni3.35Al0.1Si0.05(x=0,0.1,0.2,0.3,0.4)电极合金。系统研究了Pr的替代对合金的结构与电化学储氢性质的影响,结果表明除少量残余LaNi3相外,铸造及退火合金是由六方Ce2Ni7型(La,Mg)2Ni7相与六方CaCu5型LaNi5相构成的。Pr对La的置换对合金的电化学储氢性质产生明显影响,铸造及退火合金的放电容量和高倍率放电能力随Pr含量的增加先升后降。当Pr含量由0增加至0.4时,铸造及退火合金的100次充放电循环后容积保持率S100从64.96%和72.82%分别增加至77.94%和91.81%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号