首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The thermal conductivity of a 40 vol% silicon carbide-particulate-reinforced aluminum matrix composite was determined as a function of silicon carbide mean particle size ranging from 0.7 to 28 μm. A size dependence was found consisting of a decrease in thermal conductivity with decreasing SiC particle size. This effect is in accordance with theoretical expectations for composites with an interfacial thermal barrier at the dispersion–matrix interface. At the finest particle size of the silicon carbide, the composite thermal conductivity approached the value for the matrix with pores, as expected from theory. Only at the largest SiC particle size did the composite thermal conductivity exceed the value for the matrix. These results suggest that in maximizing the thermal conductivity of composites with an interfacial thermal barrier, the reinforcement particle size should be as large as practically possible.  相似文献   

2.
Diamond content is a key factor affecting diamond/SiC composite performance, especially thermal and mechanical properties, but the composite with high diamond content manufacturing is still challenging issues. Hot mold pressing combined with liquid silicon infiltration to make diamond/SiC composites with high diamond content and relative density has been proposed in this paper. In addition, the effect of diamond particle size on the maximization of diamond content as well as properties of the composites were evaluated. The experiment shows that the content of diamond in the composites increases with the increase of the diamond particle size. When the particle size of diamond is 400 µm, the volume fraction of diamond reaches 59.08%. The highest thermal conductivity (ddia= 300 µm) and highest bending strength (ddia= 50 µm) are 616.77 W/m K (It is the maximum TC of diamond/SiC prepared by pressureless infiltration at present) and 380 MPa, respectively. This work provides a novel and efficient preparation method for further improving the thermal conductivity of diamond/SiC composites.  相似文献   

3.
The transverse thermal conductivity of an aluminoborosilicate glass uniaxially reinforced with carbon fibers was found to be lower under near-vacuum than in nitrogen, whereas no such difference was found for the longitudinal thermal conductivity. This effect was attributed to the existence of an interfacial gap resulting from the thermal expansion mismatch between the matrix and fibers. The presence of this gap permits the gaseous environment access to the fiber-matrix interface and thereby contributes to the interfacial heat transfer. Its presence does not affect the longitudinal thermal conductivity, however, because the gap is aligned parallel to the fibers and, therefore, the direction of heat flow. Analysis of the experimental data indicates that, in nitrogen at atmospheric pressure, the gaseous conductance constitutes about one-third of the total interfacial conductance.  相似文献   

4.
The effect of interfacial reactions between Al and SiC on the thermal conductivity of SiC-particle-dispersed Al-matrix composites was investigated by X-ray diffraction and transmission electron microscopy (TEM), and the thermal barrier conductance ( h c) of the interface in the Al–SiC composites was quantified using a rule of mixture regarding thermal conductivity. Al–SiC composites with a composition of Al (pure Al or Al–11 vol% Si alloy)–66.3 vol% SiC and a variety of SiC particle sizes were used as specimens. The addition of Si to an Al matrix increased the thermal barrier conductance although it decreased overall thermal conductivity. X-ray diffraction showed the formation of Al4C3 and Si as byproducts in addition to Al and SiC in some specimens. TEM observation indicated that whiskerlike products, possibly Al4C3, were formed at the interface between the SiC particles and the Al matrix. The thermal barrier conductance and the thermal conductivity of the Al–SiC composites decreased with increasing Al4C3 content. The role of Si addition to an Al matrix was concluded to be restraining an excessive progress of the interfacial reaction between Al and SiC.  相似文献   

5.
Thermal conductivity at room temperature of diamond composites of two types: with a diamond skeleton and with diamond grains imbedded in a non-diamond matrix was evaluated in dependence of the diamond grain size (d) varied from a ten of microns to 500 μm. The thermal conductivity of the compacts with diamond skeleton obtained in the Cu–diamond system at high pressure of 8 GPa strongly increases with diamond particles size approaching the maximum value of 9 W/cm K at d  200 μm. The compacts sintered in the Cu–Ti–diamond, Al–Si–diamond and Si–diamond systems at lower pressure (2 GPa) are formed predominantly owing to the presence of the binder. It was found for these conditions that the thermal conductivity is less sensitive to the diamond grain size, reaching the value of 6 W/cm K for the composites with SiC–Si matrix.  相似文献   

6.
Experimental data on thermal conductivity of packed beds composed from various refractory particles (corundum, silica, magnesia, baddeleyite, yttrium oxide, spinel) obtained in the temperature range 400-2000 K in various gases are presented. It is found that thermal conductivity of a bed composed from crushed refractory particles may change after the first and subsequent heatings. This occurs as a result of smoothing of particle surfaces and decreasing of contact heat barrier resistances between the granules. The influence of smoothing is most significant for beds composed from particles with sizes below 2 mm. In polydisperse beds, containing micrometer-size particles, sintering processes were found to occur at temperatures above 1600 K. This led to a sharp increase of the bed thermal conductivity. In regimes where sintering did not take place, decreasing of particle size resulted in a decrease of the effective thermal conductivity. This is attributed to the increased number of contacts between the particles and the scattering of thermal radiation.  相似文献   

7.
The thermal conductivities of two lithium aluminosilicate glass-ceramic matrix composites reinforced with 30 vol% of either SiC VS (rice hull) whiskers or SiC VLS (vapor-liquid-solid) whiskers were determined from room temperature to 500°C. Because of the preferred alignment of the whiskers, the thermal conductivity values normal to the hot-pressing direction were found to be significantly higher than those in the parallel direction. The composites with the VLS whiskers exhibited higher thermal conductivity values than those with the VS whiskers. An analysis of the room-temperature data showed that the thermal conductivity values parallel to the hot-pressing direction were higher than those predicted from theory, even for whiskers with infinite thermal conductivity and perfect interfacial thermal contact. This effect was attributed to a significant contribution of percolation to the total heat flow as a result of direct whisker-to-whisker contact. For both types of whiskers, the interfacial thermal conductance and thermal conductivity values (at ∼6.5 × 105 W/(m2-K) and 200 W/(m·K), respectively) inferred from the composite thermal conductivity values perpendicular to the hot-pressing direction were essentially the same. It was concluded that the order of magnitude difference in thickness for the two whisker types was primarily responsible for the differences in thermal conductivity measured for these two composites.  相似文献   

8.
Thermal shock behavior was compared for a cordierite glass and glass-ceramics subjected to a water quench. Crystallization significantly increases the critical quenching temperature difference (ΔTc); this effect was attributed to enhanced strength and thermal conductivity offset by a corresponding increase in Young's modulus. The strength retained following thermal shock also increased significantly on crystallization for ΔT>ΔTC, probably as the result of stepwise increases in fracture toughness with increasing crack size of the glass-ceramic.  相似文献   

9.
The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.  相似文献   

10.
In this study, the effect of deposition temperature on the adhesion of diamond films deposited on WC-10%Co substrates with a Cr-N interlayer is investigated. Diamond films were deposited at different temperatures (550, 650 and 750 °C), using a hot filament chemical vapor deposition reactor. It was found that the optimal adhesion is obtained for the film deposited at 650 °C. The interplay between carbon interfacial diffusion and the adhesion of diamond films deposited at different deposition temperatures were investigated. The combined use of different characterization techniques (Indentation tests, SIMS, XPS, XRD and SEM) shows that the adhesion strength depends on the thickness of Cr-C layer formed at the interface during diamond deposition, which is strongly influenced by the deposition temperature. It is suggested that at the optimum deposition temperature, thickness of the Cr-C layer is too low to introduce a large thermal stress at the interface and sufficiently thick enough to withstand the propagation of indentation induced cracks.  相似文献   

11.
李静  冯妍卉  张欣欣  王戈 《化工学报》2016,67(Z1):166-173
界面广泛存在于复合材料中,对介孔复合材料热物性起着决定性的影响,研究界面的导热特性对于认识和理解介孔复合材料的导热机制十分重要。利用非平衡的分子动力学模拟方法计算介孔复合材料中基材与填充物间的界面热阻,考察界面热阻随温度、材料质量差异的变化,进一步用界面热阻修正介孔复合材料的有效热导率。结果表明,界面热阻的数量级为10-11m2·K·W-1,并随温度升高逐渐降低。界面两端材料质量差异越大,界面热阻越高。可通过减小孔径、减小纳米线长度、增大纳米线间距、降低纳米线填充率来降低介孔复合材料的有效热导率。界面热阻能降低材料的有效热导率。孔径越小、纳米线间距越小、纳米线长度越长、填充率越高,界面热阻降低热导率效果越显著。  相似文献   

12.
This work reviews experimental data and models for the thermal conductivity of nanoparticle suspensions and examines the effect of the properties of the two phases on the effective thermal conductivity of the heterogeneous system. A model is presented for the effective thermal conductivity of nanofluids that takes into account the temperature dependence of the thermal conductivities of the individual phases, as well as the size dependence of the thermal conductivity of the dispersed phase. We demonstrate that this model can be used to calculate the thermal conductivity of nanofluids over a wide range of particle sizes, particle volume fractions, and temperatures. The model can also be used to validate experimental thermal conductivity data for nanofluids containing semiconductor or insulator particles and confirm the size dependence of the thermal conductivity of nanoparticles. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

13.
采用溶胶-凝胶法制备纤锌矿型氧化锌(zinc oxide,ZnO)粉体,考察了煅烧温度对ZnO粉体质量的影响;将不同煅烧温度获得的ZnO填充于环氧树脂(epoxy resin,EP)得到系列ZnO/EP复合材料,采用红外光谱仪(Fourier transform infrared spectroscopy,FTIR)和场发射扫描电子显微镜(field emission scanning electron microscope,FESEM)对ZnO/EP复合材料进行结构和形貌表征,研究了ZnO粉体粒径及填充量对ZnO/EP复合材料导热性能的影响。结果表明,ZnO粉体粒径随煅烧温度升高而增大,其中700 ℃下制得的ZnO粉体粒径最大且纯度高。当ZnO填充量一定时,ZnO粉体粒径越大,越有利于提升ZnO/EP复合材料的导热性能;随ZnO填充量的增加,ZnO/EP复合材料的热导率不断提高,当ZnO体积分数为30.05%时,复合材料热导率达到0.54 W/(m·K),较纯环氧树脂提高了184%,且保持良好的力学性能。  相似文献   

14.
The present article pertains to a theoretical analysis for thermophoresis of a micro-particle in rarefied gas environment. Different from the conventional analyses, thermal stress effect in velocity slip boundary condition is taken into account. This interfacial thermal characteristic is always ignored in previous theoretical studies. The present theory with consideration of the thermal stress slip provides an appropriate modification and thus agrees well with the measured data of thermophoretic mobility of various particles. Order-of-magnitude analysis also qualitatively demonstrates enhancement of the thermal stress slip with reducing particle size or increasing characteristic temperature gradient. Finally, a parametric analysis shows that the thermal stress slip effect becomes more pronounced at conditions of high particle thermal conductivity and high Knudsen number as well.  相似文献   

15.
Rolling ceramic thermal insulation balls have advantages of low cost, large output and easy control of particle size, so it is likely to become the main raw material for 3D printing in the future, but there is little research on its thermal insulation. In this study, we used three kinds of rolling aluminum oxide balls as raw materials to obtain single-granularity-level and multi-granularity-level bulk materials. And the effects of temperature, particle size, and thermal fatigue times on the thermal conductivity of the samples were analyzed. Additionally, the experimental results were verified by FloEFD heat conduction simulation software using finite analysis method to analyze their heat conduction characteristics. With the increase of temperature from 400 °C to 1500 °C, the thermal conductivity of single-granularity-level and multi-granularity-level bulk materials increased linearly. The thermal conductivity of single-granularity-level bulk materials have no direct relationship with the particle size, and the thermal conductivity of multi-granularity-level materials with small particle size difference was a bit lower than that of materials with large particle size difference, and a bit higher than that of materials with single-granularity-level. The simulation results showed that the main reason for the above phenomenon was that the point contact between particles played a dominating role in the heat transfer process. When the contact area increased, the thermal conductivity increased obviously, and the thermal conductivity with the increasing of temperature decreased in a quadratic curve. The improved model considering the shrinkage could improve accuracy of simulation results. Heat flux at the surface contact area was 10.19 times higher than that of the point contact and 15.10 times higher than that of the solid-gas contact at 400 °C. Therefore, reducing the surface contact area and increasing the porosity could significantly reduce the thermal conductivity of the materials.  相似文献   

16.
《Ceramics International》2019,45(10):13225-13234
Despite the great potential value as heat sink materials, their practical application of high thermal conductivity (TC) Cu-diamond composites is limited since high temperature and high pressure (above 1000 K and 60 MPa) were requisite in the conventional process. In this study, high TC void-free Cu-diamond composites reinforced with various diamond particles were prepared via composite electroplating. The impacts of diamond particle sizes (ranged from 10 to 400 μm) on microstructure, interface and TC of the composites were investigated. The TC of Cu-diamond composites was improved with the increase of diamond particle sizes and well-combined interface. Interestingly, a critical size for improved the TC of Cu-diamond composites was clearly observed and the critical value (22 μm) was derived from Kipitza theory. Based on the TC results and critical analysis, the Cu-diamond composite reinforced with large diamond particles (400 μm) was synthesized, which possessed the TC of 846.52 W m−1 K−1 and the thermal expansion coefficient of 7.2 × 10−6 K−1. Such attractive thermal properties suggested that electroplating Cu-diamond composites showed the promising application as heat sink materials in microelectronic industry.  相似文献   

17.
This article reported a novel method for preparing diamond/SiC composites by tape-casting and chemical vapor infiltration (CVI) process, and the advantages of this method were discussed. The diamond particle was proved to be thermally stable under CVI conditions and the CVI diamond/SiC composites only contained diamond and CVI-SiC phases. The SEM and TEM results showed a strong interfacial bonding existed between diamond and CVI-SiC matrix. Due to the strong bonding, the surface HRA hardness could reach up to 98.4 (HV 50 ± 5 GPa) and the thermal conductivity (TC) of composites was five times higher than that of pure CVI-SiC matrix. Additionally, the effects of diamond particle size on microstructure and properties of composites were also investigated. With the increasing of particle size, the density and TC of composites with the size 27 μm reached 2.940 g/cm3 and 82 W/(m K), respectively.  相似文献   

18.
Heat dissipation remains a critical challenge in optical and electronic devices and diamond/SiC composite is the premiere material solution because of its outstanding thermal and mechanical properties. Si liquid infiltration is one of the most promising techniques to fabricate fully dense diamond/SiC composites with desired phase structures and exceptional properties. In this study, the thermal conductivity from room temperature to 1000 °C was investigated for the diamond/SiC composites fabricated by a liquid Si infiltration method. The experimental thermal measurement shows a good agreement with the computational solution obtained by solving the Boltzmann transport equation. The results suggest a strong correlation between the composite thermal conductivity and diamond volume percentage. A level-off of the thermal conductivity at high diamond content reflects increased thermal resistance. In addition, the annealing effect on the composite thermal conductivity as well as the thermal stability were evaluated.  相似文献   

19.
The role of an interfacial carbon coating in the heat conduction behavior of a uniaxial silicon carbide nitride was investigated. For such a composite without an interfacial carbon coating the values for the thermal conductivity transverse to the fiber direction agreed very well with the values calculated from composite theory using experimental data parallel to the fiber direction, regardless of the ambient atmosphere. However, for a composite made with carbon-coated fibers the experimental values for the thermal conductivity transverse to the fiber direction under vacuum at room temperature were about a factor of 2 lower than those calculated from composite theory assuming perfect interfacial thermal contact. This discrepancy was attributed to the formation of an interfacial gap, resulting from the thermal expansion mismatch between the fibers and the matrix in combination with the low adhesive strength of the carbon coating. In nitrogen or helium the thermal conductivity was found to be higher because of the contribution of gaseous conduction across the interfacial gap. On switching from vacuum to nitrogen a transient effect in the thermal diffusivity was observed, attributed to the diffusion-limited entry of the gas phase into the interfacial gap. These effects decreased with increasing temperature, due to gap closure, to be virtually absent at 1000°C.  相似文献   

20.
W-coated diamond/aluminum composites were manufactured by a pressure infiltration method. A continuous and homogeneous carbide coating was formed on the surface of diamond particles, and the selective bonding between the aluminum matrix and different diamond faces was no longer observed. The obtained composites exhibited thermal conductivity as high as 476 W⋅m 1 K 1. It was attributed to the carbide layer which increased the amount of reactive interfacial bonding and improved the mean interfacial thermal conductance. In addition, compared with the W coated diamond/aluminum composites, the thermal conductivities of uncoated ones were seriously declined by immersing the composites in moisture circumstances. SEM and XRD results indicated that the stabilities of composites thermal behaviors were closely related to the interface of composites. The W carbide layer in the interface region played a critical role in improving the stability of the composite exposure to moist environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号