首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
低压CMOS带隙电压基准源设计   总被引:2,自引:0,他引:2  
在对传统典型CMOS带隙电压基准源电路分析和总结的基础上,综合一级温度补偿、电流反馈技术,提出了一种1-ppm/°C低压CMOS带隙电压基准源。采用差分放大器作为基准源的负反馈运放,简化了电路设计。放大器输出用作电路中PMOS电流源偏置,提高了电源抑制比(PSRR)。整个电路采用TSMC0.35μmCMOS工艺实现,采用HSPICE进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。  相似文献   

2.
一种10-ppm/℃低压CMOS带隙电压基准源设计   总被引:10,自引:0,他引:10  
在对传统CMOS带隙电压基准源电路分析和总结的基础上,综合一级温度补偿、电流反馈和电阻二次分压技术,提出了一种10-ppm/℃低压CMOS带隙电压基准源。采用差分放大器作为基准源的负反馈运放,简化了电路的设计,放大器的输出用于产生自身的电流源偏置,提高了电源抑制比(PSRR)。整个电路采用TSMC 0.35μm CMOS工艺实现,采用Hspice进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。  相似文献   

3.
TN7 2007010969一种新的CMOS带隙基准电压源设计/徐静平,熊剑波,陈卫兵(华中科技大学电子科学与技术系)//华中科技大学学报(自然科学版).―2006,34(2).―36~38.设计了一种新的CMOS带隙基准电压源。通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源。仿真结果表明,在VDD=2V时。电路具有4.5×10-6V/℃的温度特性和57dB的直流电源抑制比,整个电路消耗电源电流仅为13μA。图3表1参4  相似文献   

4.
在对传统的CMOS带隙电压基准源电路的分析和总结的基础上,集合一级温度补偿、电流反馈技术,提出一种可以在低电源电压下工作,同时输出可调的低温度系数基准源电路。负反馈运放采用差分结构,简化了电路设计;同时放大器输出用作PMOS的电流源偏置,提高了电源抑制比。采用CSMC 0.6μm CMOS工艺实现,版图面积为0.41 mm×0.17 mm。Cadence Spectre仿真结果表明了设计的正确性。  相似文献   

5.
采用TSMC 0.25μm CMOS工艺,提出了一种基于衬底驱动放大器的高精度带隙基准(BGR)电路。采用衬底驱动技术的放大器,有效地降低了电源电压;通过PTAT2电流产生电路对基准电路进行2阶温度补偿,有效地降低了输出基准电压的温度系数;采用改进型共源共栅输出级电路,很好地改善了电路的电源抑制比(PSRR)。HSPICE仿真结果显示:在2 V供电电压下,输出基准电压为1.261 V,温度系数为8.24×10-6/℃,低频电源抑制比-为91 dB。整体电路功耗为1.37 mW。  相似文献   

6.
一种用于CMOS A/D转换器的带隙基准电压源   总被引:3,自引:0,他引:3  
设计了一种用于CMoS A/D转换器的带隙基准电压源.该电路消除了传统带隙基准电压源中运算放大器的失调电压及电源电压抑制比对基准源指标的限制,具有很高的精度和较好的电源电压抑制比.电路采用中芯国际(SMIC)0.35μm CMOS N阱工艺.HSPICE仿真结果表明,在3.3 V条件下,在-40℃~125℃范围内,带隙基准电压源的温度系数为2.4×10-6V/℃,电源电压抑制比为88 dB@1 kHz,功耗为0.12 mW.  相似文献   

7.
设计了一种新型电流模带隙基准源电路和一个3bit的微调电路。该带隙基准源可以输出可调的基准电压和基准电流,避免了在应用中使用运算放大器进行基准电压放大和利用外接高精度电阻产生基准电流的缺点,同时该结构克服了传统电流模带隙基准源的系统失调、输出电压的下限限制以及电源抑制比低等问题。该带隙基准源采用0.5μm CMOS混合信号工艺进行实现,有效面积450μm×480μm;测试结果表明在3 V电源电压下消耗1.5mW功耗,电源抑制比在1 kHz下为72dB,当温度从-40~85°C变化时,基准电压的有效温度系数为30×10-6V/°C。该带隙基准电路成功应用在一款高速高分辨率模数转换器电路中。  相似文献   

8.
一种CMOS带隙基准电压源设计   总被引:1,自引:1,他引:0  
为了满足IC设计中对基准电源低功耗、低温度系数、高电源抑制比的要求,设计一种带隙基准电压源电路.在对传统带隙基准结构分析的基础上,该电路重点改善基准源中运算放大器的性能,采用台积电0.35μm CMOS工艺库设计并绘制版图.仿真结果表明,温度在0~100℃之间变化时,该电路输出电压的温度系数小于10 ppm/℃,并且具有低功耗、高电源抑制比的特性.  相似文献   

9.
一个1.2 V,9 ppm/℃的CMOS带隙电压基准源   总被引:3,自引:3,他引:0  
钟昌贤  张波  周浩  卢杨 《现代电子技术》2006,29(16):120-122,125
基于传统CMOS带隙电压基准源电路的分析,结合曲率补偿技术设计了一种带衬底驱动运算放大器的低电源电压的电压基准源电路,主体电路采用电流模式基准源结构,并结合所采用的衬底驱动运放作为基准源的负反馈运放。整个电路采用0.5μm标准CMOS工艺实现,在电源电压1.2 V的条件下用HSpice进行仿真,仿真结果表明输出基准电压在-40~120℃范围内温度系数为9 ppm/℃。  相似文献   

10.
在对传统典型CMOS带隙电压基准源电路分析基础上提出了一种高精度、高电源抑制带隙电压基准源。采用二阶曲率补偿技术,电路采用预电压调整电路,为基准电路提供稳定的电源,提高了电源抑制比,在提高精度的同时兼顾了电源抑制比,整个电路采用了CSMC0.5μm标准CMOS工艺实现,采用spectre进行进行仿真,仿真结果显示当温度为-40℃~80℃,输出基准电压变化小于1mV,温度系数为3.29×10-6℃,低频时(1kHz)的电源抑制比达到75dB,基准电路在高于3.3V电源电压下可以稳定工作,具有较好的性能。  相似文献   

11.
传统带隙基准源电路采用PNP型三极管来产生ΔVbe,此结构使运放输入失调电压直接影响输出电压的精度。文章在对传统CMOS带隙电压基准源电路原理的分析基础上,提出了一种综合了一阶温度补偿和双极型带隙基准电路结构优点的高性能带隙基准电压源。采用NPN型三极管产生ΔVbe,消除了运放失调电压影响。该电路结构简洁,电源抑制比高。整个电路采用SMIC 0.18μmCMOS工艺实现。通过Cadence模拟软件进行仿真,带隙基准的输出电压为1.24V,在-40℃~120℃温度范围内其温度系数为30×10-6/℃,电源抑制比(PSRR)为-88 dB,电压拉偏特性为31.2×10-6/V。  相似文献   

12.
利用CMOS工艺中Poly电阻和N-well电阻温度系数的不同,设计了一种输出可调的二阶曲率补偿带隙基准电压源.采用Chartered 0.35μm CMOS工艺模型,使用Cadence工具对电路进行了仿真,结果表明电路在电源电压为1.8V时可正常工作,当其在1.8~3V范围内变化时,基准电压变化仅有3.8mV;工作电压为2V时,输出基准电压在-40°C到80°C的温度范围内温度系数为1.6ppm/°C,工作电流为24μA,低频下的电源抑制比为-47dB.该带隙基准电压源的设计可以满足低温漂、高稳定性、低电源电压以及低功耗的要求.  相似文献   

13.
吴蓉  张娅妮  荆丽 《半导体技术》2010,35(5):503-506
利用带隙电压基准的基本原理,结合自偏置共源共栅电流镜以及适当的启动电路,设计了一种新型基准电压源。获得了一个低温度系数、高电源抑制比的电压基准。通过对输出端添加运算放大器,把带隙基准电路产生的1.2 V电压提高到3.5 V,提高了芯片性能。用Cadence软件和CSMC的0.5μm CMOS工艺进行了仿真,结果表明,当温度在-20~+120℃,温度系数为9.3×10-6/℃,直流时的电源抑制比为-82 dB。该基准电压源能够满足开关电源管理芯片的使用要求,并取得了较好的效果。  相似文献   

14.
一种高精度低电源电压带隙基准源的设计   总被引:2,自引:1,他引:1  
设计了一种可在低电源电压下工作,具有较高电源电压抑制比、低温度系数和低功耗的带隙基准电压源。电路基于对具有正负温度系数的两路电流加权求和的原理,对传统电路做出了改进。采用UMC 0.25 μmCMOS工艺模型,使用Hspice进行模拟,设计的基准源输出电压为900 mV,电源电压可降低到1.1 V,温度系数为8.1×10-6/℃。  相似文献   

15.
为了满足深亚微米级集成电路对低温漂、低功耗电源电压的需求,提出了一种在0.25μm N阱CMOS工艺下,采用一阶温度补偿技术设计的CMOS带隙基准电压源电路。电路核心部分由双极晶体管构成,实现了VBE和VT的线性叠加,获得近似零温度系数的输出电压。T-SPICE软件仿真表明,在3.3 V电源电压下,当温度在-20~70℃之间变化时,该电路输出电压的温度系数为10×10-6/℃,输出电压的标准偏差为1 mV,室温时电路的功耗为5.283 1 mW,属于低温漂、低功耗的基准电压源。  相似文献   

16.
采用ASMC0.35μm CMOS工艺设计了低功耗、高电源抑制比(PSRR)、低温漂、输出1V的带隙基准源电路。该设计中,偏置电压采用级联自偏置结构,运放的输出作为驱动的同时也作为自身电流源的驱动,实现了与绝对温度成正比(PTAT)温度补偿。通过对其进行仿真验证,当温度在-40~125℃和电源电压在1.6~5V时,输出基准电压具有3.68×10-6/℃的温度系数,Vref摆动小于0.094mV;在低频时具有-114.6dB的PSRR,其中在1kHz时为-109.3dB,在10kHz时为-90.72dB。  相似文献   

17.
唐宁  赵荣建  李书馨 《微电子学》2012,42(2):246-249,269
带隙基准源是开关电源的重要组成部分。在对传统带隙基准源电路进行分析的基础上,结合曲率校正技术、高增益反馈技术和缓冲隔离技术,提出了一款应用于开关电源的高电源抑制比、低温漂系数和多基准输出新型基准源电路。基于0.5μm CMOS工艺,对电路进行仿真。结果表明,在-25℃~150℃范围内和典型(TT)工艺角下,设计的基准源温漂系数小于3×10-6/℃,PSRR为-78dB,可产生3V,1.2V,1V,0.2V四个基准输出电压。  相似文献   

18.
设计了一款低温度系数的自偏置CMOS带隙基准电压源电路,分析了输出基准电压与关键器件的温度依存关系,实现了低温度系数的电压输出。后端物理设计采用多指栅晶体管阵列结构进行对称式版图布局,以压缩版图面积。基于65 nm/3.3 V CMOS RF器件模型,在Cadence IC设计平台进行原理图和电路版图设计,并对输出参考电压的精度、温度系数、电源抑制比(PSRR)和功耗特性进行了仿真分析和对比。结果表明,在3.3 V电源和27℃室温条件下,输出基准电压的平均值为765.7 mV,功耗为0.75μW;在温度为-55~125℃时,温度系数为6.85×10~(-6)/℃。此外,输出基准电压受电源纹波的影响较小,1 kHz时的PSRR为-65.3 dB。  相似文献   

19.
衬底驱动超低压CMOS带隙基准电压源   总被引:2,自引:2,他引:0  
采用二阶温度补偿和电流反馈技术,设计实现了一种基于衬底驱动技术和电阻分压技术的超低压CMOS带隙基准电压源。采用衬底驱动超低压运算放大器作为基准源的负反馈,使其输出用于产生自身的电流源偏置,其电源抑制比(PSRR)为-63.8dB。采用Hspice仿真,在0.9V电源电压下,输出基准电压为572.45mV,温度系数为13.3ppm/°C。在0.8~1.4V电源电压范围内,输出基准电压变化3.5mV。基于TSMC0.25μm2P5MCMOS工艺实现的衬底驱动带隙基准电压源的版图面积为203μm×478.1μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号