首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photonic generation of tunable microwave signal using Brillouin fiber laser   总被引:4,自引:0,他引:4  
Wang R  Zhang X  Hu J  Wang G 《Applied optics》2012,51(8):1028-1032
A simple approach to generate two bands of tunable microwave signal is proposed and demonstrated. In this scheme, two single-mode fibers with optimized Brillouin frequency shift spacing have been chosen as the scattering medium in two cascaded ring cavities. Two bands of tunable microwave signal from 390 to 453 MHz and 10.863 to 11.076 GHz can be obtained through adjusting the temperature of the fiber and the pump wavelength. The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range. The generated microwave signal exhibits high stability on frequency.  相似文献   

2.
A photonic crystal fiber sensor for pressure measurements   总被引:2,自引:0,他引:2  
The pressure sensitivity of two photonic crystal fibers (PCFs) was measured. A PCF pressure sensor was then successfully developed with PCF PM-1550-01. The measurement results of the pressure sensor at three different temperatures are presented, and in the working region the maximum deviation is within 1% of the dynamic range of the sensor.  相似文献   

3.
A new class of hollow photonic crystal fibers (PCFs) that can be used as sensitive elements of chemical and biological sensors is presented. The spectral characteristics of a PCF change depending on the physical properties of a medium filling its periodic structure. The concentration of a solution of an organic compound influences the spectrum of radiation guided in the PCF. A method of measuring the response of the PCF-liquid system to changes in the concentration of a substance dissolved in the analyzed medium is developed.  相似文献   

4.
Zhou W  Wong WC  Chan CC  Shao LY  Dong X 《Applied optics》2011,50(19):3087-3092
A highly sensitive strain sensor is demonstrated by introducing a photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) in a cavity ringdown fiber loop as a sensing element. The MZI is fabricated by splicing a short length of PCF between two single-mode fibers with collapsed air holes over a short region at two splicing points, which allows coupling between core and cladding modes inside the PCF. By measuring the decay constants of the fiber ringdown loop under different applied strains, a high strain sensitivity of ~0.21 μs?1/εm and a minimum detectable strain of ~3.6 με are obtained. As a benefit from the ultralow thermal dependence of PCF, the maximum temperature-induced measurement error could be reduced to ~0.24 με.  相似文献   

5.
Hoo YL  Jin W  Shi C  Ho HL  Wang DN  Ruan SC 《Applied optics》2003,42(18):3509-3515
We report the modeling results of an all-fiber gas detector that uses photonic crystal fiber (PCF). The relative sensitivity of the PCF as a function of the fiber parameters is calculated. Gas-diffusion dynamics that affect the sensor response time is investigated theoretically and experimentally. A practical PCF sensor aiming for high sensitivity gas detection is proposed.  相似文献   

6.
A polarimetric Fabry-Perot fiber laser sensor for fluid pressure up to 100 MPa is investigated. The fluid acts on one of two elliptical-core fiber sections in the laser cavity, producing a shift in the differential phase of the two orthogonal polarization modes and thus a variation in the beat frequencies of the corresponding longitudinal laser modes. The second fiber section, with a 90 degrees offset in the core orientation, compensates for temperature-induced phase shifts. The dispersion in the birefringent fiber Bragg grating reflectors is employed to remove the near degeneracy of the polarization mode beat frequencies of a given order and to improve substantially the resolution of the sensor to a few parts in 10(6) of the free spectral range. Further investigations address the effect of the fluid on the integrity of the fiber, the influence of various fiber coatings on the sensor response, and the intrinsic stability of erbium-doped and undoped sensing fibers under fluid pressure.  相似文献   

7.
An experimental investigation on an S-tapered photonic crystal fiber interferometer is presented in this paper. The sensor exhibits highly surrounding refractive index sensitive, which is 4.7 × 10?3 RIU (refractive index unit) in 1.33–1.39 and 1.45 × 10?3 RIU in 1.39–1.44 commensurable with general sensors. Attribute to the S-shape’s distortion, red shifts are measured in axial strain test. In addition, insensitivity (4.3 pm/°C) in low temperature and sensitivity (22.4 pm/°C) in high temperature are confirmed by experiments. These properties combined with a simple fabrication process and a durable structure.  相似文献   

8.
Simulations are presented of a very broad and flat supercontinuum (SC) in both the normal and anomalous group velocity dispersion regimes of the same equiangular spiral photonic crystal fiber at low pumping powers. For a pump wavelength at 1557?nm and average pump power of 11.2?mW, we obtained a bandwidth >3?μm (970?nm–4100?nm) at 40 dB below the peak spectral power with fiber dispersion ~2.1?ps/km nm at 1557?nm. In the same fiber, at pump wavelength 1930?nm and average pump power of 12?mW the SC bandwidth was more than two octaves (1300?nm–3700?nm) and dispersion was ~1.3?ps/km nm at 1930?nm. This demonstrates the potential use of the fiber for multi-wavelength pumping with commercially available sources at fairly low power.  相似文献   

9.
Wu J  Day D  Gu M 《Applied optics》2011,50(13):1843-1849
We present a polymeric-based Fabry-Perot optofluidic sensor fabricated by combining direct laser machining and hot embossing. This technique provides a more elegant solution to conventional hot embossing by increasing the production rate, improving the reproducibility, and further reducing the cost, providing a large working area and flexibility in design modification and customization. As a proof of concept, a Fabry-Perot (F-P) optofluidic sensor was fabricated in polymethyl methacrylate (PMMA) from a micromachined stamp. The experimental results of the sensor agree well with analytical calculations and show a sensitivity of 2.13×10?3 RIU/nm for fluid refractive index change.  相似文献   

10.
A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low-cost multi-walled carbon nanotubes (MWCNTs)-based saturable absorber, which is prepared using polyvinyl alcohol as a host polymer. The multi-wavelength operation is achieved based on non-linear polarization rotation effect by incorporating 50?m long photonic crystal fiber in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48?nm. The laser also demonstrates a stable pulse train with the repetition rate increasing from 14.9 to 25.4?kHz as the pump power increases from the threshold power of 69.0?mW to the maximum pump power of 133.8?mW. The minimum pulse width of 4.4?μs was obtained at the maximum pump power of 133.8?mW while the highest energy of 0.74 nJ was obtained at the pump power of 69.0?mW.  相似文献   

11.
A multi-wavelength laser source is demonstrated with a semiconductor optical amplifier (SOA) as a gain medium. A multi-wavelength comb with equal spacing is achieved due to Fabry–Pérot modes of the SOA which oscillates in the ring cavity. A 100 m long photonics crystal fiber (PCF) is inserted in the ring cavity to provide a nonlinear gain by four-wave mixing (FWM) so that the output comb spectrum can be greatly broadened and flattened. The stability of the ring laser is also increased due to the efficient FWM phenomenon occurring in the PCF. The SOA-based laser can generate 35 lasing lines with equal spacing of 0.28 nm and extinction ratios of more than 30 dB at room temperature. The number of channels of the multi-wavelength laser can be controlled flexibly by changing the ratio of the coupler used in the ring cavity configuration as well as controlling the polarization state of the oscillating laser.  相似文献   

12.
Based on the hybrid cladding design, a single-mode photonic crystal fibre (PCF) is proposed to achieve an ultra-high birefringence and large negative dispersion coefficient using finite-element method. Simulation results reveal that with optimal design parameters, it is possible to achieve an ultra-high birefringence of 2.64 × 10?2 at the excitation wavelength of 1.55 μm. The designed structure also shows large dispersion coefficient about ?242.22 to ?762.6 ps/nm/km over the wavelength ranging from 1.30 to 1.65 μm. Moreover, residual dispersion, effective dispersion, effective area, confinement loss and nonlinear coefficient of the proposed PCF are discussed thoroughly.  相似文献   

13.
Wu H  Liu H  Huang N  Sun Q  Wen J 《Applied optics》2011,50(27):5338-5343
We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55?μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07-7.74?THz. Moreover, peak power of 2.55?W, average power of 1.53?mW, and peak conversion efficiency of more than -66.65?dB at 7.42?THz in a 6.25?cm long fiber are realized with a pump peak power of 2?kW.  相似文献   

14.
Based on stimulated Brillouin scattering (SBS), the slow light effect in photonic crystal fibre (PCF), which is filled with highly nonlinear liquid-carbon disuphide in the core region, is investigated. Maximum allowable pump power for undistorted output pulse, minimum value of pump power required to initiate the SBS effect, Brillouin gain and time-tonic delay experienced by the pulse in the designed liquid-core photonic crystal fibre, are all calculated numerically. We have found that the maximum time-delay up to ~134.4 ns at 1.064 μm can be obtained using 1 m long liquid-core PCF pumped with only 65.8 mW, which is lower than the value reported in the literature for achieving such a high delay time. The results indicate that liquid-core PCF is capable of generating tunable time-delay that is adjusted by the pump power and structural parameters of the proposed liquid-core PCF.  相似文献   

15.
王欢  郑刚  陈海滨  张雄星 《光电工程》2019,46(5):180506-1-180506-7
本文提出了一种调频连续波激光干涉非本征型法珀腔光纤温度传感器。使用具有较高热膨胀系数的不锈钢圆管封装法珀腔制成温度传感探头。不锈钢圆管作为法珀腔腔体的同时也是温度敏感元件。通过调频连续波干涉测量技术测量法珀腔因受热膨胀所产生的腔长变化量,实现对温度的传感。实验结果表明,该光纤温度传感器测温分辨率达到了0.0002 ℃,温度测量灵敏度可达3022 nm/℃。此温度传感器不仅具有较高的灵敏度与分辨率,且结构简单稳定,具有良好的应用前景。  相似文献   

16.
Fiber optic quarter waveplate (QWP) is widely used in all kinds of optical fiber systems such as fiber sensing systems. Specifically, in fiber optic current sensor (FOCS) system, which is now applied in power grids to measure current and monitor operation, fiber optic QWP is a key device and has serious impact on temperature stability and accuracy of the system. We fabricated a QWP using polarization-maintaining photonic crystal fiber (PM PCF), and studied its impact on the temperature characteristic of a home-made FOCS system. We also made a QWP with conventional polarization-maintaining fiber (PMF) for comparison purposes. The measured system error of the FOCS prototype using a QWP made of PM PCF between ?40°C and 70°C was 8.45‰, which is five times smaller than with a QWP made of conventional PMF.  相似文献   

17.
Liu CH  Jywe WY  Tzeng SC 《Applied optics》2004,43(14):2840-2845
A simple three-dimensional (3D) laser angle sensor for 3D measurement of small angles based on the diffraction theorem and on ray optics analysis is presented. The possibility of using position-sensitive detectors and a reflective diffraction grating to develop a 3D angle sensor was investigated and a prototype 3D laser angle sensor was designed and built. The system is composed of a laser diode, two position-sensitive detectors, and a reflective diffraction grating. The diffraction grating, mounted upon the rotational center of a 3D rotational stage, divides an incident laser beam into several diffracted rays, and two position-sensitive detectors are set up for detecting the positions of +/-1st-order diffracted rays. According to the optical path relationship between the three angular motions and the output coordinates of the two position-sensitive detectors, the 3D angles can be obtained through kinematic analysis. The experimental results show the feasibility of the proposed 3D laser angular sensor. Use of this system as an instrument for high-resolution measurement of small-angle rotation is proposed.  相似文献   

18.
Abstract

We demonstrate the design and operation of novel narrow spacing and stable dual-wavelength fiber laser (DWFL). A 70-cm ytterbium-doped fiber has been chosen as the gain medium in a ring cavity arrangement. Our design includes a short length photonic crystal fiber, acting as a dual-wavelength stabilizer based on its birefringence coefficient and nonlinear behavior and tunable band pass filter (TBPF) to achieve narrow spacing spectrum lasing. Our laser output is considered to be highly stable, with power fluctuation less than 0.8 dB over a period of 15 min. The flexibility and tunability of TBPF, together with polarization controller enable the spacing tuning of the DWFL from 0.03 nm up to 0.07 nm for 1040 nm region, and 0.10 nm up to 0.40 nm for 1060 nm region. The tunable wavelength spacing shows the flexibility of the DWFL in addition to stable and reliable properties of fiber laser in 1-μm region.  相似文献   

19.
The development is reported of a multi-longitudinal mode fiber laser sensor based on passive mode locking employing carbon nanotubes in the laser cavity. A polymer membrane is employed beneath the pre-strained erbium-doped fiber (EDF) to convert the sound pressure disturbance into axial strain, alter the cavity length, and induce a shift of the longitudinal modes beat. Hence, acoustic pressure measurement can be carried out by detecting the shift of the beat frequency. Experimental results show comparable strain and sound pressure sensitivity of ~0.5 kHz/με and 147.2 Hz/Pa, respectively. The proposed sensor is an alternative for the measurement of acoustic pressure and possesses the advantages of good stability and ease of interrogation.  相似文献   

20.
We demonstrate the first use, to our knowledge, of a compact, diode-pumped, femtosecond fiber laser for third-harmonic generation (THG) microscopy. We discuss the utility of this technique, as well as the technical issues involved in using this compact source, and demonstrate the first use, to our knowledge, of imaging by THG backlighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号