首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microstructure and mechanical properties of friction stir weld joints of dissimilar Mg alloys AZ31 and AZ80 were investigated in the present work. Several different welding parameters were adopted in the study, and the effects of rotation speed and welding speed on the joint quality were discussed comprehensively. In addition, material arrangement which means that AZ31 alloy was at advancing side or at retreating side has significant influence on the joint formation, including the joint microstructure and mechanical properties. A few kinds of defects were observed when the improper parameters were taken in the experiment, and the reasons for generating these defects were revealed in this work. Sound joints with good mechanical properties could be easily obtained when AZ31 was at retreating side, but it was difficult to obtain the sound joint with the contrary material arrangement. These results suggest that the material with inferior plastic deformability should be set at the advancing side and the material with superior one should be set at the retreating side in order to get sound FSW joint of dissimilar Mg alloys.  相似文献   

2.
Lap joint friction stir welding (FSW) between dissimilar 5052-H112 (1 mm) and 6061-T6 (2 mm) Al alloys with different thickness was carried out with various tool rotation speeds and welding speeds according to the fixed location of each material on bottom or top sheet. Interface morphology was characterized by pull-up or pull-down from initial joint line. Amount of vertical material transports increased and thickness of 5052 resultantly lessened with increasing tool rotation and decreasing welding speed, which were the conditions of the weak bond. Higher stress concentration on the interface pull-up region, the penetration of unbonded region into the weld zone and the lessened thickness of 5052 Al part might be the reasons for lower fracture load. Higher fracture load was acquired at the lower tool rotation speed and higher welding speed when a thicker 6061 was fixed at retreating side on top sheet. Interface morphology was the most important factor determining the mechanical strength of lap FSW joints and can be manageable using FSW parameters.  相似文献   

3.
While the fatigue behavior of die cast aluminum as well as welded aluminum wrought alloys have been subject of several studies, no systematic work has been carried out on hybrid structures made as a combination of welded sand castings and wrought alloys. Aim of the present study is to correlate the monotonic and cyclic deformation behavior of thin sheet welded joints with the microstructure in the heat affected zone of the material combination sand cast EN AC‐Al Si7Mg0.3 and wrought alloy EN AW‐Al Si1MgMn (EN AW‐6082). The metal sheets were welded using a metal inert gas cold metal transfer process under variation of the welding gap, the heat treatment parameters, as well as the surface finishes. It was demonstrated by Wöhler diagrams based on bending fatigue tests that the fatigue life could be increased for the welded and heat treated specimens as compared to the as‐received cast specimens. By means of optical microscopy this effect was attributed to microstructural changes due to the optimized welding and heat treatment process. A detailed analysis of the mechanical tests was possible by the application of an optical 3D strain analysis.  相似文献   

4.
This paper studies the microstructural features and mechanical properties of friction stir welds with dissimilar alloys and different thicknesses. The welds are produced in five different thickness/material combinations from 2024-T3 and 7075-T6 sheets with different thicknesses. A parametric study is conducted to optimize the welding parameters such that the different configurations can be compared. The paper is divided into two chapters: microstructural features and mechanical properties. In the first chapter, a study of the chemical composition and microstructure of the welds shows that a narrow chemical mixing zone is present in the dissimilar-alloy welds and that the stirring zone embodies the union rings and exhibits heterogeneous texture for most configurations. Study of the hardness, tensile properties and fracture surfaces in the second chapter shows that an asymmetric softened region, which is harder at the advancing side and extends more into the retreating side, is formed in the stirring zone and that the mechanical properties decrease as the thickness ratio increases. The fracture was partially ductile and partially brittle for all configurations.  相似文献   

5.
The microstructure and mechanical properties of pulse metal inert-gas(MIG) welded dissimilar joints between 4 mm thick wrought 6061-T6 and cast A356-T6 aluminum alloy plates were investigated. The tensile strength of the joints reached 235 MPa, which is 83% of that of 6061 aluminum alloy, and then decreased with the increase of travel speed while keeping other welding parameters constant. The microstructure, composition and fractography of joints were examined by the optical microscopy(OM),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA). Grain boundary liquation and segregation occurred in the partially melted zone(PMZ) on 6061 aluminum alloy side, and brittle Fe-rich phases were observed in partially melted zone on A356 aluminum alloy side. The minimum microhardness appeared in heat-affected zone(HAZ) near A356 aluminum alloy substrate. The samples during tensile test failed mainly in PMZ and HAZ on A356 aluminum alloy side through mixed fracture mode with quasi cleavage and dimples on fracture surface.  相似文献   

6.
Lap joint friction stir welding (FSW) between dissimilar AZ31B and Al 6061 alloys sheets was conducted using various welding parameters including tool geometry, rotation and travel speeds. Tapered threaded pin and tapered pin tools were applied to fabricate FSW joints, using different rotation and travel speeds. Metallurgical investigations including X-ray diffraction pattern (XRD), optical microscopy images (OM), scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM–EDS) and electron probe microanalysis (EPMA) were used to characterize joints microstructures made with different welding parameters. Intermetallic phases were detected in the weld zone (WZ). Various microstructures were observed in the stir zone which can be attributed to using different travel and rotation speeds. Mechanical evaluation including lap shear fracture load test and microhardness measurements indicated that by simultaneously increasing the tool rotation and travel speeds, the joint tensile strength and ductility reached a maximum value. Microhardness studies and extracted results from stress–strain curves indicated that mechanical properties were affected by FSW process. Furthermore, phase analyses by XRD indicated the presence of intermetallic compounds in the weld zone. Finally, in the Al/Mg dissimilar weld, fractography studies showed that intermetallic compounds formation in the weld zone had an influence on the failure mode.  相似文献   

7.
乔建毅  邵有发  阮野  王文权 《材料导报》2016,30(24):94-97, 102
对高速列车车体常用铝合金6082与5083板材进行熔化极氩弧焊(MIG)对接,利用光学显微镜和扫描电镜分析异种材料焊接接头的显微组织特点,利用显微硬度计、拉伸试验机和电化学工作站对接头的力学性能和耐腐蚀性能进行测试和分析。研究结果表明,焊缝成型良好,焊缝区由细小的胞状树枝晶和等轴晶构成,熔合线附近为粗大的柱状晶;焊接接头抗拉强度为199.92 MPa,断后伸长率为5.18%,断裂位置在铝合金6082的焊接热影响区(HAZ),为韧性断裂,接头的正弯性能较差,背弯性能良好;铝合金5083侧的热影响区宽为4mm,6082侧的热影响区宽为15mm,接头两侧的硬度分布有明显差别,在6082侧距焊缝中心12.5mm的显微硬度最低为63HV;6082-5083异种铝合金焊缝的耐蚀性能优于母材5083,但比母材6082差。  相似文献   

8.
Ultrasonic spot welding has received significant attention during past few years due to their suitable applications in comparison to conventional fusion welding techniques. Fusion welding of dissimilar Aluminum and Stainless steel alloys is always a challenging task because of poor control on grain size and formation of undesirable brittle intermetallic compounds in the weld metal, which have deleterious effect on mechanical properties. In the past, welding of dissimilar alloys has been performed using electron beam welding, laser beam welding and friction stir spot welding, resistance spot welding, etc. However, little work has been reported on dissimilar welding of Aluminum and Stainless steel alloys using ultrasonic spot welding. The objective of the present work is to optimize ultrasonic spot welding parameters for joining 3003 Aluminum alloy with 304 Stainless steel. Welding was performed at various clamping pressures (i.e. 30, 40, 50 and 60 psi) and energy levels for investigating its effect on microstructure, mechanical properties and bond quality of the weld. Different levels of weld quality i.e. ‘under weld’, ‘good weld’ and ‘overweld’ were identified at various welding parameters using physical attributes. The weld specimens prepared with energy 125 and 150 J showed the maximum bond strength and were rated as “good” weld. It was also revealed that for a good quality weld, the maximum tensile strength is achieved once a reasonable amount of bond density and material thinning (required for the formation of metallurgical bonds) is attained.  相似文献   

9.
Abstract

The tensile strength and energy absorption for dissimilar metal friction welds between 6061-T6 Al alloy and type 304 stainless steel at high rates of loading were determined using the split Hopkinson bar. Cylindrical tensile specimens machined from as welded butt joints of 13 mm in diameter were used in both static and impact tests. Friction welding was conducted using a brake type friction welding machine under two different welding conditions. The effects of welding conditions and loading rate on the joint tensile properties were examined. Results show that the joint tensile properties were greatly affected by the welding parameters, and were slightly enhanced with increased loading rate. Scanning electron microscope observations revealed that the tensile fracture modes in the butt joint specimens varied with loading rate and depend on welding conditions. Microhardness profiles across the weld interface were measured to investigate the extent of the heat affected zone. The slight enhancement of the joint tensile properties with increasing loading rate is primarily attributed to the strain rate dependence of the thermally softened 6061-T6 Al alloy base material.  相似文献   

10.
Laser- and Electron Beam Welding of Magnesium Alloys Designing and constructing complex structures using magnesium raises the necessity to solve joining problems. Laser beam welding and electron beam welding are two methods which are very fast and allow short clock cycles. Together with fast magnesium processing like die casting and extrusion pressing these welding methods help to increase productivity and reduce production costs. The experiments were carried out on two different electron-beam-welding-machines: while some of the experiments took place on a conventional high-vacuum electron-beam welding machine (EBW), a non-vacuum electron-beam welding machine (NVEBW) was used to weld under atmospheric pressure conditions. The laser beam welding experiments were carried out with CO2- and Nd:YAG-Lasers. The investigations show that beam welding of magnesium-wrought and die-cast alloys is possible without crack formation. The mechanical properties of the welded wrought alloys were in the range of the base material. Only the fracture strain of the joints was reduced. When welding die-cast alloys, the formation and the properties of the welding joints were determined by the quality of the base material, such as pore content and contamination of the alloys. Thus, using vacuum die-cast alloys with high purity can reduce the porosity within the joining zone. By the use of wire filler material, the quality of the welding seam could be improved, because the porosity was reduced, and the vaporising material was compensated.  相似文献   

11.
Investigations were continued on the dissimilar laser beam welds of AA6056 and Ti6Al4V, fabricated by inserting Ti‐sheet into the profiled Al‐sheet and melting AA6056 alone. By using microstructure, hardness and strength as the criteria, sites exhibiting non‐uniform microstructure and localized plastic deformation due to strength mismatch were investigated in two orientations: ? crack parallel to the weld and ? crack perpendicular to the weld for fatigue crack propagation and fracture toughness at room temperature. Effect of temper of AA6056 on these properties was studied for two conditions; welding in T4 followed by post weld heat treatment T6, and welding in T6 and naturally aged for a defined period. The orientation “crack parallel to the weld” was investigated in 3 locations on the side of AA6056: the interface and the two changeovers on the Al‐side. Firstly, between the fusion zone and the heat affected zone (3 mm from the interface) and secondly, between (primary) heat affected zone and towards the base material (7 mm from the interface). Although brittle intermetallic TiAl3 had been formed at the interface, uncontrolled separation or debonding at the interface was not observed. Insofar the bond quality of the weld was good. However, the ranking of interface was the lowest since fatigue crack propagation was relatively faster than that in the fusion zone and heat affected zone, and fracture toughness was low. Therefore, unstable fatigue crack propagation is observed when the crack propagates perpendicular to the weld from AA6056 towards Ti6Al4V. The results have shown that the dissimilar joints exhibit improved performance when laser beam welded in the T6 condition.  相似文献   

12.
Dissimilar lap joint of Al6063 aluminium and AZ91 magnesium alloys was successfully produced by friction stir welding. Three different plunge depths (3.2 mm, 3.25 mm, and 3.3 mm) were adopted during welding. Similar Al6063–Al6063 lap joints were also produced along with the dissimilar Al6063–AZ91 joints for the purpose of comparing the joint formation. With the increased plunge depth, the width of the similar Al6063 - Al6063 lap joint was increased. On the contrary, joint width was decreased for the dissimilar joint with increased plunge depths. The dissimilar joint was formed with a strong metallurgical bonding between the Al6063 and AZ91 alloys, which is attributed to the mechanical mixing of these alloys in the nugget zone. Additionally, the formation of intermetallics was also observed from the x-ray diffraction analysis. The variations within the measured hardness values were higher at the joint interface due to the mixing of aluminium and magnesium alloys in the nugget zone. From the tensile shear tests, increased strength and decreased elongation were measured with the increased plunge depth. The results demonstrate the importance of the plunge depth on the lap joint formation between dissimilar Al6063–AZ91 alloys during friction stir welding.  相似文献   

13.
The present paper aims at producing a crack-free weld between a commercially available Ti alloy (Ti-6 wt% Al-4 wt% V) and a wrought Al alloy (Al-1 wt% Mg-0.9 wt% Si). Ti alloy and Al alloy with a plate thickness of 3 mm are butt welded using a 2.5 kW continuous CO2 laser. The laser power, welding speeds and offset of the laser with respect to the joint are considered as the variable parameters. It is observed that intermetallic compounds (mainly TiAl and Ti3Al) are formed in the fusion zone depending on the amount of Al and Ti melted by the laser. These intermetallic phases are very brittle and the solid-state cracks are formed near the Al side of the interface because of the stress developed after the solidification. The formation of cracks is sensitive to the total Al content in the fusion zone. In order to minimize the dissolution of Al in the fusion zone and to increase the toughness of the intermetallic phases, Nb foil is added as a buffer between the Ti alloy and Al alloy workpieces. It is observed that the partially melted Nb acts as a barrier to dissolve Al in the fusion zone and facilitates a good joining condition for welding of Ti alloy with Al alloy. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
The flow patterns in dissimilar friction stir welds of AA5083-O and AA6082-T6 alloys have been studied. It was observed that material flows (pushes but does not mix) more from the advancing side into the retreating side. Material flow from the retreating side to the advancing side only occurs in the tool shoulder domain, and the pull is greatest at the transition region between the tool shoulder domain and the tool pin domain. It was also observed that materials tend to extrude out only in the thermomechanically affected zone of the retreating side, which was influenced by rotation of both the tool shoulder and the tool pin. The finest grains were present in the regions closest to the tool edge in the retreating side. The volume fraction of recrystallized grains increases down into the deeper part of the nugget from the flow arm region. Microhardness measurements revealed that regions of lowest hardness values were the nugget and the heat affected zone of the AA6082-T6 alloy side. The welding speeds had no influence on the microhardness values per se, but affected the mixing proportions in the flow arm and in the nugget stem.  相似文献   

15.
目的 针对7075–O铝合金高焊速、高转速搅拌摩擦焊接缺陷多、质量差等问题,研究焊接接头材料流动对焊缝性能的影响。方法 选用焊接速度1 000 mm/min,搅拌转速分别为1 000、1 200、1 600、1 700 r/min的条件对7075–O铝合金板进行搅拌摩擦焊接,分析不同焊接工艺参数下焊接接头的显微组织及力学性能。同时,利用Fluent软件模拟7075–O铝合金搅拌摩擦焊接过程中的材料流动场分布,分析焊接材料流动与缺陷形成的关系。结果 利用7075–O铝合金三维流动模型,预测出高焊速条件下焊缝前进侧形成一个低压区,孔洞等缺陷易出现在此区域,数值模拟预测与试验结果吻合。在高焊接速度1 000 mm/min、焊接转速1 200 r/min时,焊缝表面光滑平整,焊核区域的硬度分布更加均匀。结论 随着搅拌转速从1 000 r/min增大到1 700 r/min,热输入量逐渐增大,孔洞缺陷由隧道型孔洞转变为不连续的小孔。同时,随着搅拌转速的增大,焊缝高硬度区域的宽度先增大而后降低。当搅拌转速为1 200 r/min时得到了优质的焊接接头,焊缝焊核区硬度分布均匀,硬度值最高为176HV。  相似文献   

16.
采用8.5 mm厚度2A14-T4铝合金和自主研制搅拌工具进行静止轴肩搅拌摩擦焊(stationary shoulder friction stir welding,SSFSW)实验,探讨焊接工艺参数对接头组织和力学性能的影响规律。结果表明:只有在低转速工艺参数范围内(转速ω=400~600 r/min与焊接速率v=60~120 mm/min)可获得焊缝表面光滑、无缺陷厚板铝合金SSFSW焊接接头。SSFSW焊缝区主要由焊核区(NZ)组成,周围热力影响区(TMAZ)及热影响区(HAZ)宽度明显减小,焊核区与搅拌针形状类似且由两种不同尺寸细小等轴晶构成,前进侧NZ晶粒比后退侧NZ更为细小。接头显微硬度呈"W"状分布,NZ硬度值可达到母材硬度80%~90%,TMAZ与HAZ交界处存在软化区,硬度最低为母材硬度72%左右。在给定ω=500 r/min,v=140 mm/min焊接参数下,SSFSW接头抗拉强度可达到母材的88%,断裂位置多位于后退侧TMAZ与HAZ交界处软化区,具有韧性断裂特征。  相似文献   

17.
Microstructural evolution and mechanical properties of friction stir welded AA7075‐T6 aluminum alloy were examined. Grain structure and precipitate evolution in the stir zone and heat‐affected zone were evaluated using optical microscope and differential scanning calorimetry. A significant grain refinement and dissolution of η′ precipitates in the stir zone were found, but chromium‐bearing dispersoids remained nearly unchanged. The main particles in the stir zone and heat‐affected zone were η precipitates as well as Guinier‐Preston zones formed during post‐weld natural aging. The small recrystallized grains were observed in the thermo‐mechanically affected zone next to the stir zone. A W‐shaped hardness distribution where soft region was produced in the heat‐affected zone at a short distance from the stir zone were obtained. Hardness profiles of the welds were explained by precipitate distributions. Friction stir welding resulted in the reversion and coarsening of η′ precipitates. The formation of Guinier‐Preston zones in the stir zone and some parts of the heat‐affected zone during post‐weld natural aging increased the hardness. In transverse tensile specimens, fracture occurred in a location with the minimum hardness at either advancing or retreating side randomly. Further, influences of welding parameters on mechanical properties were investigated.  相似文献   

18.
A high strength Al–Zn–Mg alloy AA7039 was friction stir welded by varying welding and rotary speed of the tool in order to investigate the effect of varying welding parameters on microstructure and mechanical properties. The friction stir welding (FSW) process parameters have great influence on heat input per unit length of weld, hence on temperature profile which in turn governs the microstructure and mechanical properties of welded joints. There exits an optimum combination of welding and rotary speed to produce a sound and defect free joint with microstructure that yields maximum mechanical properties. The mechanical properties increase with decreasing welding speed/ increasing rotary speed i.e. with increasing heat input per unit length of welded joint. The high heat input joints fractured from heat affected zone (HAZ) adjacent to thermo-mechanically affected zone (TMAZ) on advancing side while low heat input joints fractured from weld nugget along zigzag line on advancing side.  相似文献   

19.
Abstract

The microstructural change related with the hardness profile has been evaluated for friction stir welded, age hardenable 6005 Al alloy. Frictional heat and plastic flow during friction stir welding created fine and equiaxed grains in the stir zone (SZ), and elongated and recovered grains in the thermomechanically affected zone (TMAZ). The heat affected zone (HAZ), identified only by the hardness result because there is no difference in grain structure compared to the base metal, was formed beside the weld zone. A softened region was formed near the weld zone during the friction stir welding process. The softened region was characterised by the dissolution and coarsening of the strengthening precipitate during friction stir welding. Sound joints in 6005 Al alloys were successfully formed under a wide range of friction stir welding conditions. The maximum tensile strength, obtained at 507 mm min-1 welding speed and 1600 rev min-1 tool rotation speed, was 220 MPa, which was 85% of the strength of the base metal.  相似文献   

20.
In this study, dissimilar friction stir welding of aluminum 5052 and stainless steel 304 has been carried out with different process parameters. This investigation provides a better insight regarding the defect formation of the weld joints with tilt angles ranging from 0 ° to 2.5 °. The experiments were conducted according to Taguchi L9 orthogonal array by changing the tool rotational speed, and welding speed. The tool pin was kept 70 % towards the aluminum with the tool rotational speed ranging from 800 min−1 to 1200 min−1 with a varying traverse speed of 5 mm/min to 15 mm/min. The bottom part of the stir zone was perfectly welded without any defects. Tunnel defect was detected just above the bottom welded surface. Microstructural analysis reveals that the weld between both materials is formed on the retreating side, whereas on the advancing side, the weld was formed with void defects. Mostly, the stir zone is filled with irregular shaped aluminum and steel parts which were detached from the base material. Several other defects such as voids, cracks, and fragmental defects were observed in the stir zone irrespective of the process parameters. It was observed from the experimental investigations that the tunnel defect can be reduced by increasing the tilt angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号