共查询到19条相似文献,搜索用时 78 毫秒
1.
一种基于词聚类的中文文本主题抽取方法 总被引:2,自引:0,他引:2
提出了一种基于词聚类的中文文本主题抽取方法,该方法利用相关度对词的共现进行分析,建立词之间的语义关联,并生成代表某一主题概念的用种子词表示的词类。对于给定文档,先进行特征词抽取,再借助词类生成该文档的主题因子,最后按权重输出主题因子,作为文本的主题。实验结果表明,该方法具有较高的抽准率。 相似文献
2.
词共现文本主题聚类算法 总被引:1,自引:0,他引:1
文本主题是文本聚类的关键,而文档中共现词对对文档主题的表现力非常强.因此,在对现有文本主题挖掘和共现词对抽取算法深入研究的基础上,提出了一种基于关联规则词共现的文本主题聚类算法(TCABARWC),即首先采用关联规则挖掘算法抽取文档共现词对,利用词共现提取文本主题信息,然后根据共现词对建模并实现共现词对相似度量,最后结合层次聚类算法实现文本聚类.实验结果表明,相比其他聚类算法,基于关联规则共现词对的层次聚类算法,大大降低了文本向量的维度以及算法复杂度,在聚类效率和准确性上都有显著提高,并获得了较好的聚类效果. 相似文献
3.
4.
传统的文本聚类方法大部分采用基于词的文本表示模型,这种模型只考虑单个词的重要度而忽略了词与词之间的语义关系.同时,传统文本表示模型存在高维的问题.为解决以上问题,提出一种基于频繁词集的文本聚类方法(frequent itemsets based document clustering method, FIC).该方法从文档集中运用FP-Growth算法挖掘出频繁词集,运用频繁词集来表示每个文本从而大大降低了文本维度,根据文本间相似度建立文本网络,运用社区划分的算法对网络进行划分,从而达到文本聚类的目的.FIC算法不仅能降低文本表示的维度,还可以构建文本集中文本间的关联关系,使文本与文本间不再是独立的两两关系.实验中运用2个英文语料库Reuters-21578,20NewsGroup和1个中文语料库——搜狗新闻数据集来测试算法精度.实验表明:较传统的利用文本空间向量模型的聚类方法,该方法能够有效地降低文本表示的维度,并且,相比于常见的基于频繁词集的聚类方法能获得更好的聚类效果. 相似文献
5.
随着视频分享网站的兴起和快速发展,互联网上的视频数量呈爆炸式增长,对视频的组织及分类成为视频有效使用的基础。视频聚类技术由于只需要考虑视频数据内在的簇结构、不需要人工干预,越来越受到人们的青睐。现有的视频聚类方法有基于视频关键帧视觉相似性的方法、基于视频标题文本聚类的方法、文本和视觉多模态融合的方法。基于视频标题文本聚类的视频聚类方法由于其简便性与高效性而被企业界广泛使用,但视频标题由于其短文本的语义稀疏特性,聚类效果欠佳。为此,本文面向社会媒体视频,提出了一种社会媒体平台上视频相关多源文本融合的视频聚类方法,以克服由于视频标题的短文本带来的语义稀疏问题。不同文本聚类算法上的实验结果证明了多源文本数据融合方法的有效性。 相似文献
6.
7.
8.
当前,Web文本聚类主要存在三个挑战:数据规模海量性、高雏空间处理复杂性和聚类结果的可理解性。针对上述挑战,本文提出了一个基于top-k频繁词集和k-means的混合聚类算法topHDC。该算法在生成初始聚簇时避免了高维空间向量处理,k个频繁词集对聚类结果提供了可理解的解释。topHDC避免了已有算法中聚类结果受文档长度干扰的问题。在两个公共数据集上的实验证明,topHDC算法在聚类质量和运行效率上明显优于另外两个具有代表性的聚类算法。 相似文献
9.
基于PAT-array和模糊聚类的文本聚类方法 总被引:5,自引:0,他引:5
阐述了基于后缀树的文本聚类(STC)算法,对其所存在的缺陷进行了分析,并在此基础上提出了采用PAT-array和模糊聚类相结合的方法对其进行的改进,以提高聚类的质量。 相似文献
10.
针对标题文本聚类中的聚类结果不稳定问题,提出一种基于聚类融合的标题文本聚类方法。该方法对标题文本的特征词进行筛选,将标题文本转化为特征词集合;提出基于统计和语义的相似度计算方法,计算特征词集合间的相似度;引入基于共协矩阵的聚类融合算法,得出聚类结果。实验结果表明,和传统聚类算法相比,该方法提升了标题文本聚类的稳定性。 相似文献
11.
刘欣佘贤栋唐永旺王波 《数据采集与处理》2017,32(5):1052-1060
针对互联网短文本特征稀疏和速度更新快而导致的短文本聚类性能较差的问题,本文提出了一种基于特征词向量的短文本聚类算法。首先,定义基于词性和词长度加权的特征词提取公式并提取特征词代表短文本;然后,使用Skip-gram模型(Continous skip-gram model)在大规模语料中训练得到表示特征词语义的词向量;最后,引入词语游走距离(Word mover′s distance,WMD)来计算短文本间的相似度并将其应用到层次聚类算法中实现短文本聚类。在4个测试数据集上的评测结果表明,本文方法的效果明显优于传统的聚类算法,平均F值较次优结果提高了56.41%。 相似文献
12.
13.
一种高效的用于文本聚类的无监督特征选择算法 总被引:14,自引:0,他引:14
特征选择虽然非常成功地应用于文本分类,但却很少用于文本聚类,这是因为那些高效的特征选择方法通常都是有监督的特征选择算法,它们因为需要类信息而无法直接应用于文本聚类.为了能将这些方法应用到文本聚类上,提出了一种新的无监督特征选择算法:基于K-Means的特征选择算法(KFS).这个算法通过在不同K-Means聚类结果上使用有监督特征选择的方法,成功地选择出了最为重要的一小部分特征,使文本聚类的性能提高了近15%. 相似文献
14.
在文本检索中,由于用户需求的表达方式不充分,常会得到大量无关信息,给用户检索带来诸多不便。本文提出的基于词共现的文本相似度计算,可以让用户选择去掉或保留和某一文本相似的文本集,提高用户检索效率。 相似文献
15.
基于向量空间模型(VSM)的文本聚类会出现向量维度过高以及缺乏语义信息的问题,导致聚类效果出现偏差。为解决以上问题,引入《知网》作为语义词典,并改进词语相似度算法的不足。利用改进的词语语义相似度算法对文本特征进行语义压缩,使所有特征词都是主题相关的,利用调整后的TF-IDF算法对特征项进行加权,完成文本特征抽取,降低文本表示模型的维度。在聚类中,将同一类的文本划分为同一个簇,利用簇中所有文本的特征词完成簇的语义特征抽取,簇的表示模型和文本的表示模型有着相同的形式。通过计算簇之间的语义相似度,将相似度大于阈值的簇合并,更新簇的特征,直到算法结束。通过实验验证,与基于K-Means和VSM的聚类算法相比,文中算法大幅降低了向量维度,聚类效果也有明显提升。 相似文献
16.
针对文本分类任务中标注数量少的问题,提出了一种基于词共现与图卷积相结合的半监督文本分类方法。模型使用词共现方法统计语料库中单词的词共现信息,过滤词共现信息建立一个包含单词节点和文档节点的大型图结构的文本图,将文本图中邻接矩阵和关于节点的特征矩阵输入到结合注意力机制的图卷积神经网络中实现了对文本的分类。实验结果表明,与目前多种文本分类算法相比,该方法在经典数据集20NG、Ohsumed和MR上均取得了更好的效果。 相似文献
17.
18.
基于文本集密度的特征词选择与权重计算方法 总被引:3,自引:0,他引:3
根据汉语语言自身的特点,在基于原有的特征项提取方法基础之上,提出了基于文本集密度的特征词选择的思想,对于特征项个数和选择进行了界定,找出了不损失文本有效信息的最小特征词语集,并且利用其中的中间值作为词语权重计算的一部分,创造出更为合理的权重计算方案。最后利用一种新的衡量权重好坏的标准——元打分法,对文中所提出的方法的正确性和有效性进行了实验和证明。 相似文献
19.
一种基于自动阈值发现的文本聚类方法 总被引:12,自引:0,他引:12
文本聚类随着网上文本的激增以及实际应用中的需求,引起了人们越来越多的重视.通过分析文本的特征以及常用的文本聚类方法,提出了一种对文本进行细致划分获取细化簇、并在细化簇基础上进行聚类的文本聚类方法.在聚类过程中,采用曲线的多项式拟合技术提出了一种自动发现阈值的方法,并把该方法应用于细化簇的寻找步骤中.与凝聚的层次聚类方法的实验比较结果表明,使用自动阈值发现的方法在时间消耗、聚类效果、以及对孤立点的容忍性方面都具有更优的性能. 相似文献