首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 547 毫秒
1.
分析了连续重整装置预加氢、重整及再接触和催化剂再生部分氯元素来源及危害,介绍了石脑油油气脱氯工艺,重整生成油(包括液化石油气)和重整氢脱氯工艺,以及再生循环气和放空气脱氯工艺流程及工业应用情况,并讨论了碱洗、Chlorsorb氯吸附和固体脱氯剂脱氯技术在再生循环气和放空气脱氯中的优缺点。总结比较了国内不同型号的脱氯剂的工艺技术指标及脱氯效果,并简要介绍了连续重整装置中与脱氯工艺同时使用的控制装置腐蚀的其它方法。  相似文献   

2.
《化工设计通讯》2016,(10):43-44
对持续重整催化剂再生固态脱氯技术进行分析,通过固体脱氯及取代原碱洗与水洗系统,将工艺流程进一步简化,便于操控。通过使用可以看出,固态脱氯技术的使用,降低了再生系统的腐蚀性,令再生运转时间延长,并且减少了再生气体的水含量,提升了催化剂的再生性能,具备良好的经济效益与环保效益。  相似文献   

3.
脱氯剂的选型及工业应用   总被引:2,自引:1,他引:2  
马魁堂  冯续 《工业催化》2002,10(5):20-22,41
本文介绍了国内外脱氯剂性能及使用范围。并从原料、操作温度、工艺流程等方面论述了脱氯剂的选型原则,同时给出脱氯剂在工业装置中的应用概况。  相似文献   

4.
根据连续重整装置不同部位的工艺特点,探讨了ET系列脱氯剂在连续重整装置的预加氢高温脱氯、重整产氢低温脱氯及连续重整再生循环气高温脱氯中的应用。结果表明:ET系列脱氯剂能较好地脱除重整进料、重整产氢和再生循环气中的氯化氢,较好地消除了氯化氢对装置的腐蚀隐患。  相似文献   

5.
任文龙 《工业催化》2013,21(1):43-45
介绍SJ-07型高温脱氯剂在中国石油化工股份有限公司镇海炼化分公司1.2 Mt.a-1连续重整装置上工业应用情况。工业运行及标定结果表明,SJ-07型再生烟气脱氯剂具有较高的脱氯性能、良好的抗CO2和抗水能力,完全满足连续重整装置再生单元脱氯要求。  相似文献   

6.
本文介绍了半再生重整装置氯的来源、危害及新型WGL-A高温脱氯剂的工业应用情况。结果表明:在预加氢反应条件下,新型WGL-A脱氯剂具有脱氯效果好、氯容量高、对重整催化剂无危害等优点,可以推广应用。  相似文献   

7.
重整再生气脱氯剂的选择与应用   总被引:2,自引:0,他引:2  
针对困扰重整装置催化剂再生后活性不稳定的问题,对原装置进行了技改,采用固体脱氯剂代替原来的碱洗来处理重整催化剂再生气,使再生系统达到平稳良好的运行状态。本技改措施的关键是要选择优良的高温脱氯剂。  相似文献   

8.
高效脱氯剂与气体中HCl高温脱除的研究   总被引:1,自引:0,他引:1  
对五种脱氯剂在固定床反应器中与HCl气体反应研究发现 ,在温度为 30 0℃ ,空速为 30 0 0h-1 ,进口HCl气体质量浓度为 1× 10 -3 mg m3 条件下 ,所有脱氯剂都能迅速与HCl气体发生反应 ,并且在反应开始的一段时间内 ,能使混合气体中的HCl气体质量浓度降低至小于 0 5× 10 -6 mg m3 ,其中EC0 2脱氯剂具有较好的化学反应性和较高的氯容量。同时发现在相同反应时间和相同空速条件下 ,随温度的升高 ,EC0 2脱氯剂的氯容量也随之升高 ,此外还研究了 5 5 0℃时EC0 2脱氯剂床层的氯分布。  相似文献   

9.
常温脱氯剂与HCl气体反应动力学的研究   总被引:2,自引:0,他引:2  
在固定床反应器中研究了自制的铁系常温脱氯剂与HCl气体的反应动力学,导出了计算脱氯剂氯容的动力学方程q=0.309[(exp(0.036t))/(exp(0.036t)+exp(61.9Z)-1)]×100%.根据该方程,可以计算各个时刻、床层不同深度处脱氯剂的氯容,从而判断脱氯剂的性能及其使用寿命.  相似文献   

10.
冯续 《大氮肥》1998,21(6):430-435
介绍氯对合成氨,制氢装置及后序催化剂的危害,国内外常用脱氯剂的型号及性能,在探有脱氯剂脱氯机理的基础上,探讨了操作条件对脱氯剂性能的影响和国内脱氯剂的工业应用现状。  相似文献   

11.
Several technologies are currently being developed to separate carbon dioxide from large point sources, such as coal-fired power plants. An emerging technology that shows great potential is a calcium oxide–calcium carbonate cycle. A major drawback is the calcium carbonate decreases in reactivity over multiple cycles. The Ohio State University demonstrated in 2008 the first carbonation–calcination reaction (CCR) process that includes intermediate hydration for sorbent regeneration and its feasibility over multiple cycles at the 120 kWth scale with actual flue gas from coal combustion. The CCR Process utilizes a calcium-based sorbent to react with the carbon dioxide and sulfur dioxide in a flue gas stream to form calcium carbonate and calcium sulfate, respectively. The carbon dioxide is subsequently released from the calcium carbonate to produce a high-purity, sequestration-ready carbon dioxide stream while regenerating the calcium oxide sorbent. The sulfur dioxide is fixated as calcium sulfate and removed through a purge stream. An intermediate hydration step restores reactivity to the calcium oxide sorbent. Process analysis from computer simulations shows the CCR Process to be highly effective and efficient in removing both carbon dioxide and sulfur dioxide at low energy penalties under realistic conditions. A 20–22% decrease in electricity generation efficiency with the CCR Process is expected, compared with amine scrubbing around 27% and oxy-combustion around 25% energy penalty. A 25–28% increase in thermal energy with the CCR Process is expected to maintain a constant electrical output. Further, the CCR Process consumes half the oxygen necessary for an oxy-combustion plant and 25% less steam necessary for amine scrubbing.  相似文献   

12.
韩志旺  高春珍 《广州化工》2011,39(5):84-85,141
氧化铈是一种新型的高温煤气脱硫剂,它的主要优点是再生过程中能产生单质硫。本文采用工业硝酸铈Ce(NO3)3.6H2O为原料制取CeO2,用干混法制备CeO2高温煤气脱硫剂。在固定床反应器中考察不同空速、不同硫化温度以及水气氛对脱硫剂脱硫效率的影响。结果表明:硫化温度800℃,空速1 500 h-1脱硫剂的脱硫效率较高;水气氛的存在,抑制了脱硫剂的还原与硫化,使得脱硫剂的脱硫效率下降。  相似文献   

13.
Parametric studies with the NOXSO process—a dry, regenerable flue gas treatment system that simultaneously removes SO2 and NOx from flue gas produced by the combustion of coal—were conducted. The reusable sorbent that was tested consisted of sodium carbonate impregnated on a high surface area γ-alumina sphere (1·6- mm nominal diameter). All process steps, including adsorption and regeneration, were integrated into a new 60-KWe-scale Life-Cycle Test Unit so that continuous, long-term operation of the total process could be experimentally evaluated. The effects of sorbent flow rate, temperature, inlet SO2 and NOx, concentrations, and sorbent residence time (fluid bed depth) on pollutant removal efficiencies in the absorption step were determined. Also, the impact of the type of regenerant gas, temperature, steam, excess regenerant gas, and diluent on the regeneration of the sorbent was investigated. Sorbent properties with respect to time on stream (cycles of operation) are also reported.  相似文献   

14.
采用新型干法气–固–固流化床反应器进行模拟燃煤电厂尾气的高效同时脱硫、脱硝. 在内径53 mm的流化床中,以砂粒作为固相介质、自制的K2CO3/Al2O3为吸附剂,考察了温度、吸附剂粒径、吸附剂活性组份(K)与气相中污染组份(SO2,NO)的摩尔比、模拟气中SO2/NO摩尔比等工艺条件对脱硫脱硝效率的影响. 在无氨条件下同时脱硫、脱硝的效率可分别达到100%和92%. 大量数据表明,尾气中的SO2对吸附剂表面NO的脱除反应有显著促进作用.  相似文献   

15.
在湿法烟气脱硫系统运行时,因吸收剂循环使用,吸收塔内浆液中的氯离子会随着脱硫系统的运行逐渐富集,对脱硫系统和周边环境产生很大的危害,所以对脱硫废水的脱氯处理进行了研究。采用丙烯酸强碱性阴离子交换树脂,对比了静态及动态吸附条件下树脂对氯离子的吸附容量,研究了动态吸附条件下钙、镁离子质量浓度的变化以及树脂的再生性能,重点研究了在静态吸附条件下螯合剂和软水剂的添加对吸附过程中溶液pH以及氯、钙、镁离子质量浓度的影响,考察了静态吸附条件下树脂的再生性能。结果表明:在动态吸附条件下,由于絮状沉淀的影响,树脂的再生性能大大降低;在静态吸附条件下,树脂对氯离子的吸附容量比动态吸附条件少约30%,螯合剂和软水剂的添加有助于提高树脂的吸附容量,有助于降低废水pH(添加软水剂条件)和氯离子含量,有助于减少游离钙、镁离子产生的絮状沉淀对树脂吸附性能的影响并提高树脂的再生性能。  相似文献   

16.
气流床烟气干法脱硫技术的初步试验研究   总被引:2,自引:0,他引:2  
介绍了新型燃煤烟气干法脱硫并回收硫技术的工艺流程概念。其特点是利用可再生煤基脱硫剂细粉进行干法连续脱硫, 脱硫过程在下喷式气流床中完成; 采用间接换热式脱硫剂热再生, 生成含高浓度二氧化硫的再生气体; 加压、冷却再生尾气, 其中的二氧化硫液化并与其它气体组分相分离, 进而生产液体二氧化硫副产品; 并介绍了烟气脱硫、脱硫炭再生和再生尾气液化的单元试验研究结果。  相似文献   

17.
This paper presents a simulation study on the kinetic performance of combined methane combustion, steam/dry reforming, and limestone calcination for autothermal, hydrogen‐producing, and rapid sorbent regeneration in turbulent fluidized bed reactors. The effects of key operational factors are investigated at reactor pressures of 1 bar to 5 bars, including reactor temperature, CaCO3/total gas molar feed ratio, and sorbent residence time. The results are compared to those for conventional steam calciners, demonstrating the potential for superior performance of this novel sorbent regeneration technology under certain circumstances. A simple, but effective, design methodology is then suggested to determine the proper range of operating conditions and/or reactor dimensions for limestone calcination using this process.  相似文献   

18.
Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications. A Fe2O3-based high-temperature coal gas desulfurizer was prepared using red mud from steel factory. The influences of regeneration temperature, space velocity and regeneration gas concentration in SO2 atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor. The changes of phase and the composition of the Fe2O3-based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction (XRD) and X-ray Photoelectron spectroscopy(XPS), and the changes of pore structure were characterized by the mercury intrusion method. The results show that the major products are Fe3O4 and elemental sulfur; the influences of regeneration temperature, space velocity and SO2 concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible. The desulfurization sorbent cannot be regenerated at 500°C in SO2 atmosphere. Within the range of 600°C–800°C, the time of regeneration becomes shorter, and the regeneration conversion increases as the temperature rises. The time of regeneration also becomes shorter, and the elemental sulfur content of tail gas increases as the SO2 concentration in inlet is increased. The increase in space velocity enhances the reactive course; the best VSP is 6000 h−1 for regeneration conversion. At 800°C, 20 vol-% SO2 and 6000 h−1, the regeneration conversion can reach nearly to 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号