共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
滚动轴承作为机械系统的重要组成部件,由于工作环境恶劣,极易发生故障。故障轴承振动信号包含瞬态冲击成分、谐波成分、背景噪声等多种成分。为准确提取故障特征,基于稀疏表示理论,提出Laplace小波字典的轴承故障诊断方法。首先,截取振动信号片段若干,运用相关滤波法找到相关系数最大时的信号片段,依据此确定基底函数,构造Laplace小波原子并扩展成稀疏字典;然后,采用OMP算法,完成信号在字典下的稀疏重构,实现降噪;最后,对降噪信号进行包络分析,提取故障特征,确定故障类型。仿真和实验均验证了所提方法的有效性和可行性,具有一定的应用价值。 相似文献
3.
形态梯度解调在电机轴承故障特征提取中的应用研究 总被引:1,自引:0,他引:1
轴承故障在电机设备常见故障中占有很大比例,且极易与转子故障发生耦合作用,形成复合故障。针对电机轴承故障信号调制性的特点,提出采用形态梯度解调方法对轴承故障信号中的冲击成分进行提取。针对传统包络解调分析在处理双加性时域信号时的局限性,仿真验证了形态梯度和形态差值算子在处理该类信号时的有效性。通过分析结构长度对解调性能的影响,论证了形态梯度解调在解调性能等方面要优于形态差值解调,更有利于进行特征提取。仿真和实例证明,形态梯度解调算法克服了包络解调抗低频信号干扰能力不强的缺陷,且故障特征反应明显,可以更有效地提取电机轴承故障特征。 相似文献
4.
针对滚动轴承振动信号具有非线性、非平稳性和非高斯性,并且故障特征往往淹没于系统噪声之中而难于识别的问题,
提出了以多种群差分进化(multiple population differential evolution, MPDE) 算法来改进集合经验模式分解( ensemble empirical
mode decomposition, EEMD) 的 MPDE-EEMD 消噪方法,并与自适应共振解调技术( adaptive resonance demodulation technique,
ARDT)相结合实现故障特征提取。 首先,为了解决 EEMD 中加入参数依靠人工选择且难以准确获取的问题,建立极值点分布
特性评价函数,利用 MPDE 来寻优获取最佳白噪声幅值,实现 EEMD 自适应分解。 然后,采用峭度与相关性相结合的准则对分
解后的 IMF 分量进行自动筛选,将满足条件的有效信号进行重构,实现对原始振动信号的降噪处理。 最后,采用 ARDT 自动确
定对消噪信号进行带通滤波的带宽和中心频率,再通过包络解调提取出滤波信号的特征频率。 将轴承仿真故障信号与实际故
障信号用于算法的验证,结果表明 MPDE-EEMD+ARDT 能有效提取出轴承故障特征。 相似文献
5.
6.
基于差值信号的故障特征提取及应用 总被引:3,自引:0,他引:3
以电路软故障作为研究对象,提出了一种基于差值信号做故障特征的方法。首先将被测电路中各状态的信号波形的数据与标准信号波形的数据作差值,差值作为新的数据组,再进行小波包变换提取特征向量,经主元分析后选取具有代表主要信息的作为综合特征向量,最后送到分类器进行诊断。实验结果表明此方法可以有效地将电路软故障区分开来。 相似文献
7.
8.
针对地铁车轮轴承的声学法故障诊断中背景噪音大、难以提取出有效故障特征的问题,提出了一种在强噪声背景下故障特征提取的方法。对声音信号进行短时傅里叶变换(short-time Fourier transform,STFT)得到时频图,时频图中的条纹就是故障特征;沿条纹方向将图像各个点的信号强度相加,得到时频图对应的信号强度叠加折线图来展示故障特征,并且提出一种基于峰值高度的自适应循环降噪算法对信号强度叠加折线图进行降噪,得到该折线图的评价指标为有效峰值数目;最后提出一种自适应滑动窗口检测法来截取时频图中条纹分布的区域,以此来得到最优的故障特征展现效果。实验结果表明,所提出的方法可以从采集的音频信号中提取出来明显有效的故障特征。 相似文献
9.
受电机所处工作环境中诸多因素的影响,轴承故障振动数据通常会混杂大量噪声,使得故障特征被无效噪声信息所淹没。为了将轴承故障冲击特征信息从含噪信号中提取出来,提出了一种CEEMDAN与改进形态差值滤波结合的故障诊断方法。在诊断初始阶段利用CEEMDAN对故障信号加以处理,得到相应的固有模态函数(IMF);用归一化互信息及峭度值作为评判标准,筛选所需的IMFs分量信号,并以此为基础完成信号重构;利用改进形态差值滤波实现对重构信号的去噪处理;求取处理后的信号频谱并加以探究,提取故障特征信息,完成对故障的有效诊断。由实例验证结果可知,该方法可在背景噪声干扰下对故障特征频率进行较好的定位,能够作为滚动轴承故障诊断的有效方法。 相似文献
10.
11.
针对共振解调中带通滤波器参数的选取通常比较困难,以及滚动轴承早期微弱故障信号通常被强烈的背景噪声淹没,为此,提出了使变分模态分解(variational mode decomposition,VMD)和谱峭度法共同作用来处理故障信号的方法。首先要重构故障信号,利用VMD分解得到故障信号的本征模态分量(intrinsic mode function,IMF),再计算各分量对应的峭度值对其自适应重构。然后,对重构信号进行快速谱峭度分析,并据此设计带通滤波器。最后,根据重构信号共振解调后的谱线即可准确判断轴承故障。通过处理实测数据进行诊断,结果表明了该方法较传统共振解调法诊断结果更精确。由此可见,谱峭度法在滤波器参数选择上具有可靠性,以及VMD与谱峭度结合能够降低噪声干扰提取微弱故障信号。 相似文献
12.
针对工业场景下复杂工况导致的轴承故障数据特征分布差异,以及难以获得大量有标签数据的问题,提出一种基于
Wasserstein 距离与局部最大平均偏差(LMMD)改进的一维卷积子域适应对抗迁移网络(SANN)。 该网络首先构建 CNN 特征提
取器进行预训练,学习领域特征表示,在对抗训练阶段,对抗层引入 Wasserstein 距离来度量源域与目标域的差异,实现边缘分
布的对齐,固化训练结果。 在特征提取层引入 LMMD 计算模块捕获每个类别的细粒度信息,实现条件分布的对齐。 通过两种
变工况下的轴承故障数据集对该模型性能进行验证。 实验结果表明,无监督的条件下,本文所提方法在目标数据集上相较于基
础域对抗网络分别提高了 5. 0% 和 6. 9% 的识别精度,性能优于现有的迁移算法。 相似文献
13.
滚动轴承是风电机组中故障最为频繁的部件之一,准确有效的轴承故障诊断方法有助于保障风电机组安全稳定运行。针对轴承振动信号特征微弱、难以诊断的问题,提出了一种基于改进降噪自编码器的风电机组轴承故障检测方法。首先引入了一维信号的图像化预处理,将原始的时域信号转化为二维特征灰度图。然后利用卷积神经网络在图像特征提取上的强大优势,构建了堆叠降噪自编码器与卷积神经网络的集成模型,去除了传统卷积神经网络中的池化层,进一步提升提取特征的鲁棒性和泛化性。整体诊断流程由数据驱动,减少了对于经验的依赖。最后的实验结果表明,该方法能够精确诊断不同类型的轴承故障。此外,通过与其他方法的对比实验进一步验证了该方法在故障诊断方面的优越性。 相似文献
14.
滚动轴承故障信号多呈现非平稳、多分量调制特性,早期故障信号调制特性微弱、易受周围设备噪声干扰,导致轴承早期故障特征淹没在噪声信号中,故障特征难以提取。为此,提出一种变分模态分解(variational mode decomposition,VMD)与自相关分析相结合的轴承故障特征提取方法。首先利用自相关分析消除故障信号中噪声干扰,提取周期成分;然后再用VMD算法将消噪信号分解成若干本征模态分量(intrinsic mode function,IMF),运用能量算子对相关系数及峭度值较大分量进行解调分析;最后通过能量解调谱来判别滚动轴承故障类型。将该方法应用到滚动轴承仿真故障数据和实测数据中,结果表明,该方法可降低了噪声的干扰,有效提取故障特征频率,能够实现滚动轴承故障的精确诊断。 相似文献
15.
针对滚动轴承早期故障特征微弱,且振动信号是一组随时间变化的序列,具有一定的时序相关性,导致滚动轴承早期故障检测难度增加的问题,本文提出了一种基于深度分解的动态独立成分分析(deep dynamic independent component analysis,Deep DICA)故障检测方法。主要思想是首先增加观测数据矩阵,以便将动态过程考虑在内。然后,为了更好地挖掘出微弱的早期故障信息,提出了深度分解原理对早期故障进行特征提取。最后,建立故障检测模型进行在线故障检测,并通过轴承实验对所提出的方法进行了验证。实验结果表明,提出的基于Deep DICA的故障检测方法有很好的准确率和适用性。 相似文献
16.
针对模拟电路故障诊断识别率较低的问题,提出了基于双空间特征提取的融合特权信息支持向量机的模拟电路故障诊断新方法。首先对采集的信号进行主成分分析(principal component analysis,PCA)——特征提取;并用融合特权信息支持向量机LUPI-SVM(SVM of learning using privileged information,LUPI-SVM)分类器和SVM-GA分类器进行预分类;对分类结果不同的样本进行独立成分分析(independent component analysis,ICA)—特征提取,并用LUPI_SVM进行分类识别,Sallen-Key滤波电路故障诊断仿真实验结果表明该方法有效提高了分类的性能,为模拟电路故障诊断提供了新的途径。 相似文献
17.
轴承是旋转机械设备的关键部件,目前已有很多轴承故障诊断方法,但其中一些方法只能针对特定的轴承故障进行诊断,可能不适用于其他轴承故障问题,而且大部分方法的诊断准确率还可以进一步提高。提出小波包能量熵与深度置信网络(DBN)相结合的方法进行轴承故障诊断。首先对轴承振动信号进行小波包变换,然后以能量熵的形式构建特征向量,这些特征向量含有不同频段内的振动能量大小,可以用于区分各种轴承故障。最后利用基于DBN的深度模型对能量熵特征向量进行故障识别。使用两类轴承数据集进行验证,分别获得100%和99.5%的故障识别准确率。实验结果表明,该诊断方法具有较好的通用性,而且可以达到很高的诊断准确率。 相似文献
18.
针对变换器中因电解电容退化而引起的等效电阻异变的故障诊断问题,提出了一种基于逆向卡尔曼滤波的电力变换器故障诊断方法。将变换器抽象为一类卡尔曼滤波动态方程。将电路元件参数作为卡尔曼滤波的未知状态,利用电路的电压和电流作为已知矩阵,逆向推导卡尔曼滤波递推公式,完成电力变换器的参数辨识和故障诊断。针对变换器正常状态下的参数辨识结果,表明所提出的逆向卡尔曼滤波参数辨识算法具有较高的精度。同时针对变换器故障状态下的故障诊断结果,表明逆向卡尔曼滤波算法也具有很好的跟踪性,能够快速显示故障元件及其参数变化情况。仿真验证了所提出方法的有效性和实用性。 相似文献