首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
《天然气化工》2016,(3):37-42
利用碱(NH3和KOH)改性活性炭,N2吸附法、酸碱滴定、FTIR对改性前后活性炭进行表征分析,测定低浓度含氧煤层气CH4在改性活性炭上的吸附透过曲线。结果表明,活性炭经氨水和KOH改性后,随氨水/KOH浓度的增加,改性活性炭微孔孔容先增大后降低,表面总碱量逐渐增大。其中,K-2/AC的微孔孔容最大(0.64m L/g),表面碱性基团含量较多(1.51mmol/g),对CH4的吸附量最大,单位吸附量达到7.16m L/g,较AC提高了31.4%。  相似文献   

2.
超高比表面积活性炭储氢性能研究   总被引:1,自引:0,他引:1  
以石油焦为原料、KOH为活化剂制得超高比表面积活性炭吸附剂并用于H2吸附储存,采用BET和SEM对其结构进行了表征。结果表明,该吸附剂具有发达的微孔结构且其比表面积高达2693 m2/g,其孔结构以狭缝状孔结构为主。该吸附剂具有高的H2吸附储存能力,在吸附压力为9.0 MPa、吸附温度为273K时,H2脱附量可达12.21 mmol.g-1。  相似文献   

3.
实验以毛竹废料为原料采用磷酸活化法制备了既有较高比表面积又含有大量中孔的活性炭,测定了干燥活性炭的CH4、CO2、N2及O2吸附等温线及预吸附水活性炭的CH4吸附等温线,以考察其对甲烷的吸附分离及存储性能。实验结果表明:干燥活性炭对甲烷的吸附性能与其它气体存在较大差异,可应用于吸附分离CH4/CO2、CH4/N2、CH4/O2及CH4/空气气体混合物中的甲烷气体。在275K条件下(水炭比为2.43),预吸附水的活性炭在3.49MPa下的甲烷储量达10.58mmol/g,是同温同压条件下干燥活性炭甲烷储量的1.72倍,并远远大于同温同压条件下其它预吸附水活性炭的甲烷储量,可在较低压力条件下(<4MPa)实现甲烷的高效存储。  相似文献   

4.
石油焦基活性炭孔结构及电化学性能   总被引:1,自引:1,他引:0  
采用KOH作为活化剂活化石油焦,制备出不同比表面积的活性炭。考察了在水性电解质中用于双电层电容器的活性炭电极的电化学性能,探讨了影响微孔活性炭储电的因素。结果表明,随着比表面积的增大,活性炭的中孔孔容及比电容增加,高比表面积活性炭的电化学性能稳定;微孔活性炭孔径越大,其表面积利用率越大;当比表面积大于2000m^2/g时,活性炭的双层电容量稳定在0.08~0.10F/m^2。  相似文献   

5.
用制桐油后的废物——桐壳为原料,分别采用磷酸、氯化锌和氢氧化钾为活化剂,制备桐壳基活性炭。研究了活化剂对桐壳基活性炭孔隙结构的影响,通过测定试样在77K时的N:吸附-解吸等温线,以BET方程和BJH法计算其比表面积、细孔体积和孔径分布来获得孔隙结构信息,以XRD表征活性炭的微晶结构来获得活性炭的微观结构信息,SEM观察表面形貌。结果表明,磷酸活化的活性炭中孔比例较高,氯化锌活化的活性炭以微孔为主,中孔也得到一定比例发展;氢氧化钾活化法可制得微孔孔隙发达的高比表面积活性炭。  相似文献   

6.
甲烷在高比表面积活性炭上吸附行为的初步研究   总被引:12,自引:1,他引:11  
采用以石油焦为原料、KOH为活化剂制得的高比表面积活性炭作为吸附剂,研究了甲烷在这种活性炭上的吸附行为,探讨了活性炭的比表面积和孔结构与其甲烷吸附性能的关系以及吸附温度对甲烷吸附行为的影响。结果发现,活性炭的比表面积和孔结构是决定其甲烷吸附性能的主要因素;活性炭对甲烷的吸附量随吸附温度的升高逐渐减少;比表面积为2953m2/g的高比表面积活性炭在26℃、3.5MPa下对甲烷的质量吸附量为0.289g/g,换算为标准状态(STP)下的体积吸附量为121V/V。  相似文献   

7.
《天然气化工》2015,(5):5-8
以太西无烟煤为原料在不同的工艺条件下制备活性炭,测定其比表面积、孔径分布及CH4、N2吸附性能。结果表明,以太西无烟煤为原料可制备孔隙结构均匀的微孔活性炭,且成型方式对微孔率有很大影响,在相近烧失率时,二次成型有利于小于1.15nm的微孔结构的生成与保持,增加CH4平衡吸附量,提高CH4/N2的平衡分离系数。  相似文献   

8.
以太西无烟煤为原料,制取不同活化程度的活性炭。利用甲烷吸附量、比表面积、孔径分布对其吸附性能及孔隙结构进行表征。研究发现,制备的活性炭拥有发达的微孔结构,线性拟合表明0.60nm~1.15nm范围内的微孔结构为甲烷吸附有效区间,大于此范围的孔结构在甲烷吸附过程中起通道作用。  相似文献   

9.
周静  柏任流  郑开波 《石油化工》2013,42(7):749-754
采用不同含量的过氧化氢溶液和硝酸溶液对商用活性炭AC-1进行改性并经He-H2高温热处理,同时对石油焦活性炭进行了He-H2高温热处理以作为对比。采用低温N2物理吸附、TPD和Boehm酸碱滴定等手段对活性炭进行了表征。以甲烷和N2混合气为煤层甲烷模型气,考察了活性炭孔道结构对甲烷选择吸附行为的影响。实验结果表明,不同改性方法对活性炭孔道结构的改变有明显的影响,经He-H2高温热处理后不同的活性炭具有相似的表面化学性质;活性炭的孔径是选择吸附甲烷的首要因素,最佳孔径范围为0.71~0.74 nm;微孔比表面积决定了甲烷的吸附容量,微孔比表面积越大,甲烷富集容量越大。  相似文献   

10.
孔结构对活性炭吸附CH4和CO2 的影响   总被引:1,自引:0,他引:1  
苏伟  周理  周亚平  孙艳 《天然气工业》2006,26(10):147-149
高比表面积活性炭不仅具有良好的吸附存储能力,还具有优良的吸附分离性能。为此,选择了3个活性炭样品,利用77 K氮气吸附数据,采用一种基于简化局部密度函数的方法来计算孔径分布,并用体积法测定了活性炭在298 K对甲烷和二氧化碳的吸附等温线。研究表明,M6-4、K17和BY-1这3个活性炭样品的比表面积基本相同(分别为2117 m2/g、2123 m2//g和2073 m2//g),但孔径分布却明显不同,因而它们的吸附能力有着较大差异。单从吸附量来考虑,活性炭K17更适合吸附存储甲烷。3个活性炭样品对甲烷和二氧化碳的吸附能力有着较大的差异,对于CH4/CO2的吸附分离过程具有较大的应用潜力。  相似文献   

11.
甲烷在高比表面活性炭上脱附行为的研究   总被引:3,自引:0,他引:3  
用以石油焦为原料、KOH为活化剂制得的高比表面积活性炭作为吸附剂,研究了甲烷在这种吸附剂上的脱附行为,探讨了活性炭的BET比表面积和孔结构与甲烷脱附性能的关系以及脱附温度和脱附时间对甲烷脱附行为的影响。结果发现:在这种高比表面积活性炭上,甲烷存在着明显的不可逆吸附;活性炭的比表面积和孔结构对甲烷的脱附性能有一定影响,并且随着脱附温度的升高和脱附时间的延长,脱附量逐渐增多  相似文献   

12.
13.
KOH是制备天然气吸附剂的优质活化剂,但目前尚存在使用量大并在活化后的样品中有部分金属钾残留的问题。对比了几种助活化剂(ZnCl2、FeCl3、HJ)与KOH复合活化对石油焦吸附剂储存甲烷性能的影响。结果表明:助剂ZnCl2、FeCl3与KOH的协同作用效果较差,难以提高KOH活化石油焦吸附剂的甲烷储存性能;但助剂FeCl3与KOH复合可减少,甚至消除活化反应后产生的金属钾;助剂HJ与KOH复合活化对减少KOH的用量,提高KOH的活化效果有利,并能有效控制活化反应后金属钾的残留。WKOH/WC为3∶1~4∶1时,HJ/KOH复合体系即可获得性能优异的甲烷吸附剂,其中WKOH/WC为4∶1的粉状吸附剂在3.5 MPa、25 ℃下的甲烷质量吸附量可达17.7%,有效体积储气量达92.6(体积比),5.0 MPa下的有效体积储气量达111.5(体积比)。  相似文献   

14.
微孔炭质吸附剂吸附贮存天然气的最佳孔径研究   总被引:15,自引:0,他引:15  
本文运用狭缝模型和微孔容积填充理论(TVFM),计算出了微孔炭质吸附剂吸附贮存天然气的最佳孔径在T=298°K时,为15×10-10~19×10-10m。  相似文献   

15.
通过实验测定了变压吸附分离专用吸附剂CNA133 、CNA229 对纯组分N2 、CH4 、CO、CO2 的吸附性能。由Clausuis Claperon 方程(ln pT)q = QaRT根据实验数据得出吸附剂分离气体的性能随环境温度变化的规律即反映吸附量、吸附压力与温度三者之间关系的吸附方程:q = Г( p ,T) ,并将计算结果与实测结果进行比较,相对误差在5 % 以内。根据求得的吸附方程,定量化论述了温度对两种吸附剂上纯组分的吸附性能、待分离组份之间的分离因子以及有效分离因子的影响。对吸附剂CNA133 ,温度的变化主要影响吸附剂的单位处理能力和CO 与N2 的分离因子 KCO/ N2 ,但对 KCO/CH4 基本无影响;对吸附剂CNA229 ,温度的变化既影响吸附剂的单位处理能力,又影响分离因子 KCO2/CH4 和 KCO2/N2 ;并讨论了温度对组份之间分离因子的不同程度影响的原因。  相似文献   

16.
针对煤基活性炭性能不佳的问题,以太西煤(TX)和灵武煤(LW)为原料,通过对配煤、炭化、活化等工艺的优化,从而制备一种高性能活性炭,并对制备的活性炭进行孔结构表征和柴油吸附脱硫性能评价.结果表明,该活性炭制备的优化工艺条件为:配煤质量比为89%TX+11%LW、活化剂(KOH)质量分数0.8%、炭化温度600℃、升温速...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号