首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [FePt]94Au6 and [FePt]90Ag10 nanoparticle arrays were synthesized on Si substrates by a reverse micellar method, combined with plasma treatment and in-situ deposition of a SiO2 overlayer, and the post annealing step was performed to drive the face-centered cubic to tetragonal phase transition. These FePt nanoparticles exhibit a quasi-hexagonal order with tailored inter-particle spacing and particle size. The effects of the Ag and Au on the structural and magnetic properties of FePt were investigated. The results indicate that both Au and Ag additives can remarkably enhance the coercivity and reduce the ordering temperature, however, the optimum composition is different for them. The optimum composition is determined to be [FePt]94Au6 and [FePt]90Ag10, respectively, for which the ordering temperature of FePt nanoparticles is reduced by -100 degrees C. After 600 degrees C annealing, the [FePt]94Au6 and [FePt]90Ag10 nanoparticles are totally ferromagnetic with apparent larger coercivities of -7.0 kOe, which is about 3.8 kOe larger than that of the pure FePt nanoparticles. The mechanism of the chemical ordering acceleration may be attributed to the defects and strains caused by the Au/Ag additives.  相似文献   

2.
The presence of H 2 along with an inert gas during annealing was considered as a prerequisite in achieving high coercivity in alloys such as FePt and CoPt nanoparticles synthesized through chemical methods. CoPt nanoparticles were synthesized using a one-step polyol process without using any surfactant and annealed at various temperatures in N 2 atmosphere. The magnetic properties of Co 40Pt 60 sample annealed at 700 oC in N 2 atmosphere showed a room temperature coercivity of 8.4 kOe. The magnetic interactions present in the samples were studied using δM measurements. The evolution of high coercivity in the samples annealed at 700 oC showed that N 2 is a cheaper alternative to the existing reducing gas mixture.  相似文献   

3.
CoPt/Ag films were prepared by magnetron sputtering on glass substrates and subsequent annealing. The dependence of degree of ordering and magnetic properties on Ag film thickness and annealing conditions were investigated. It was found that the Ag underlayer played a dominant role in inducing the (001) texture of the CoPt film after annealing. CoPt films with a thickness about 20 nm and Ag underlayers with a thickness about 70 nm are easy to obtain a large degree of ordering and a perpendicular magnetic anisotropy after annealing at 700 degrees C for 30 min. CoPt/Ag films with out-of-plane coercivity (Hc (perpendicular)) in the range of 13.5-14.0 kOe and a out-of-plane squareness (S(perpendicular)) of 0.97 were obtained after annealing at 700 degrees C for 30 min. Ag underlayer is beneficial to enhance the Hc(perpendicular)and S(perpendicular) of CoPt film significantly. The degree of ordering and perpendicular magnetic properties of the CoPt films which deposited on Ag underlayer are larger than those of the single layer CoPt films.  相似文献   

4.
FePt magnetic nanoparticles have been synthesized by superhydride reduction of FeCl2 and Pt(acac)2 at high temperature. Adding superhydride (LiBEt3H) to the phenyl ether solution of FeCl2 and Pt(acac)2 in the presence of oleic acid, oleylamine, and 1,2-hexadecanediol at 190?°C, followed by refluxing at 245?°C, led to monodisperse 3.5?nm FePt nanoparticles. The effect of oleylamine and oleic acid surfactants on the nucleation and growth of FePt nanoparticles were studied. The size of Pt was controlled by oleylamine surfactant in nucleation stage. To prevent sintering of the FePt nanoparticles, oleic acid surfactant was used in growth stage. The energy dispersive spectroscopy results revealed that the particle composition was first Fe11Pt89 in nucleation stage and after adding superhydride the composition changed to Fe63Pt37 in growth stage. The structural and magnetic measurements indicated that the L10 structure of FePt nanoparticles is formed after annealing and the coercivity of superlattice FePt nanoparticles increases to 7.5?kOe after heat treatments.  相似文献   

5.
Electrodeposited thick films of FePt (with the nominal composition 50 % Fe/50 % Pt) on three metallic (Au, Ag, Au) underlayers were annealed at various temperatures. The magnetic and morphological properties of the resulting films were then monitored. The Au and Ag underlayers promoted the growth of the (bct) L10 FePt phase. The greater growth of this phase in the films deposited on the Ag underlayer led to the crystallographic texturing in the (001) direction. This was accompanied by a significant magnetic anisotropy and a negative shift of the remanent magnetization in the presence of an applied field. The coercivity of the Ag underlayer films increased to 18 kOe while the coercivity of the Au underlayer films decreased to ~2 kOe when the annealing temperature was increased to 800 °C.  相似文献   

6.
Iskandar F  Iwaki T  Toda T  Okuyama K 《Nano letters》2005,5(7):1525-1528
The preparation of a three-dimensionally (3D) ordered macroporous iron-platinum (FePt) film derived from monodisperse FePt nanoparticles (approximately 3 nm in diameter) and polystyrene latex particles (254 nm in diameter) is described. The prepared film has a hexagonally ordered porous structure and coercivity up to 10 kOe after annealing at a temperature of 600 degrees C. We also found that size of FePt particles was maintained at around 3 nm, even after annealing at a temperature of 600 degrees C.  相似文献   

7.
磁性金属合金纳米粒子的合成与自组装   总被引:2,自引:0,他引:2  
介绍了用高温液相法合成FePt、CoPt、FeCoPt和FeCoAg等磁性纳米粒子及其自组装的原理和方法,讨论了这些纳米粒子所具有的优异性能,并且指出了它们的最新应用。  相似文献   

8.
Spherical 4 nm FePt nanoparticles were synthesized by the simultaneous decomposition of Fe(CO)5 and the polyol reduction of Pt(acac)2. The final Fe-to-Pt composition was tuned between 15-55 at.% by varying the ingredient precursor ratios. The effect of composition and structural ordering on the macroscopic magnetic features of final FePt nanoparticles was examined via post-synthetic annealing stages at different conditions. Structural ordering is promoted in all cases, though samples approximating equiatomic Fe/Pt ratios eventually transform to fct-FePt phase while the FePt3-phase is favored for the Pt-richer samples. Consequently, the magnetic features of the annealed nanoparticles may be categorized; the hard magnetic FePt region dominating for Fe content between 40-55 at.% and the soft magnetic FePt3 region dominating in the region 20-30 at.% while Fe content less than 20 at.% results in Pt-richer phases with diminishing ferromagnetic behavior.  相似文献   

9.
We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.  相似文献   

10.
A nanoporous FePt alloy has been fabricated by dealloying a melt-spun Fe(60)Pt(20)B(20)alloy composed of nanoscale amorphous and face-centered-cubic FePt(fcc-FePt)phases in H2 SO4 aqueous solution.The nanoporous alloy consists of single fcc-FePt phase with an Fe/Pt atomic ratio of about 55.3/44.7,and possesses a uniform interpenetrating ligament-channel structure with average ligament and pore sizes of 27 nm and 12 nm,respectively.The nanoporous fcc-FePt alloy shows soft magnetic characteristics with a saturation magnetization of 37.9 emu/g and better electrocatalytic activity for methanol oxidation than commercial Pt/C in acidic environment.The phase transformation from disordered fcc-Fe Pt into ordered face-centered-tetragonal FePt(L10-FePt)in the nanoporous alloy has been realized after annealing at823-943 K for 600 s.The volume fraction of the L10-FePt phase in the alloy increases with the rise of annealing temperature,which results in the enhancements of coercivity and saturation magnetization from 0.14 kOe and 38.5 emu/g to 8.42 kOe and 51.4 emu/g,respectively.The ligament size of the samples is increased after annealing.  相似文献   

11.
CoPt nanoparticles with an average size of 3?nm and narrow distribution were synthesized by chemical reduction of Co(CH(3)COO)(2) and Pt(acac)(2) by polyethyleneglycol-200. The as-prepared nanoparticles have a disordered fcc structure which transformed after thermal treatment to an ordered fct structure, which results in coercivity up to 6?kOe at room temperature and 9?kOe at 5?K because of the high magnetocrystalline anisotropy of the tetragonal structure [Formula: see text].  相似文献   

12.
Here, particular focus is placed on the atomic alignment and the order–disorder phase transition of the FePt alloy with the aid of a model that can describe realistic phenomena. Here, we present a method to study the order–disorder phenomena of FePt alloys. We will discuss the increase in the coercivity of FePt nanoparticles by an increasing annealing temperature for annealed FePt nanoparticles. According to the experimental evidence, we will present a model for explaining spin-glass-like behavior of these particles during the annealing procedure. In the phase transition from disordered FCC to ordered FCT in FePt nano-particles can be treated by first-order phase transitions. So, the mean field approach can be used in order to model this kind of phase transition. In nanoparticles, which are synthetized by sol–gel methods, the short range parameter is predominant because in these kinds of preparations, the long range order takes a lot of time to happen. By using a short range parameter, we are able to use the mean field approach, which considers the diffusion of atoms to the near neighborhood sites. The effects of random exchange and random magnetocrystalline anisotropy are known as the main results of coercivity reduction in magnetic nanoparticles. These effects are strongly dependent to the annealing temperature of nanoparticles. During disorder–order transition, these two effects are max. As transition continues, these effects vanish and coercivity of nanoparticles increases. Here, we will add these two effects to the Hamiltonian of the FePt system. With increasing the annealing temperature, the fraction of the FePt nanoparticles with a FCC disordered phase vanishes, which leads to decrease in the amount of 〈j〉. During the annealing process, the $\frac{c}{a}$ ratio varies as a function of the annealing temperature. The relation between the $\frac{c}{a}$ ratio and the annealing temperature is derived. The derived $\frac{c}{a}$ ratio and coercivity formulas are compared with experimental results. The results are in a good agreement with experimental data.  相似文献   

13.
The structural and magnetic properties of L10-FePt/Ag films were studied by X-ray diffraction and a vibrating sample magnetometer. The FeAg/Pt films were obtained by depositing FeAg thin films on thermally oxidized Si (001) substrates via magnetron sputtering and Pt layers on their surface after annealing FeAg thin films at 400 °C with and without an out-of-plane magnetic field of 10 kOe. These films were further annealed at various temperatures to obtain L10-FePt phase. The results indicated that the pre-annealing of FeAg thin films under 10 kOe magnetic field caused (001) orientation of Fe particles, and the deposition of Pt layer on such orientated underlayers reduced the ordering temperature of FePt in FeAg/Pt films, realizing the L10-FePt phase at 400 °C. The higher coercivity and ordering degree were also observed in the samples, compared with those pre-annealed without magnetic field at the same annealing condition.  相似文献   

14.
Xia G  Wang S  Jeong SJ 《Nanotechnology》2010,21(48):485302
L1(0) ordered alloys, such as FePt, CoPt and FePd alloys with high magnetocrystalline anisotropy, have attracted much attention due to their potential applications in ultrahigh density data storage. The assembly or organization of nanoparticle arrays is necessary for device application. A facile and general method to fabricate highly ordered ferromagnetic nanostructure arrays was demonstrated. It is found that simple oxygen plasma can make a hydrophilic polymer template, which would easily integrate with the widely used spin-coating process. With simple block copolymer lithography and spin-coating process, uniform ferromagnetic nanoparticle arrays can be easily fabricated over a large area. It is also significant that a very high coercivity up to 10?kOe was obtained in CoPt nanodot arrays. This method can find attractive applications in ultrahigh density storage media.  相似文献   

15.
Co-Pt nanoparticles encapsulated in carbon cages have been prepared by sonoelectrodeposition followed by annealing in a CO atmosphere. Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. We used an electrolyte containing chloroplatinic acid and cobalt chloride and found that the atomic ratio of Co:Pt in the as-formed materials varied from 0.2 to 0.8 as the deposition current density was changed from 15 to 35 mA cm(-2). However, the as-deposited materials were inhomogeneous, comprising a mixture of Pt-rich and Co-rich nanoparticles. X-ray diffraction indicated that subsequent heat treatment (700?°C for 1 h) under CO gas created an ordered CoPt alloy phase that exhibited hard magnetic properties. Transmission electron microscopy showed many of the resulting nanoparticles to be encapsulated in carbon cages, which we ascribe to Co-catalyzed decomposition of CO during annealing. The thickness of the carbon cages was about ten layers, which may have helped reduce sintering during annealing. The size of the resultant nanoparticles was about 100 nm diameter, larger than the typical 5-10 nm diameter of as-deposited nanoparticles.  相似文献   

16.
Monodisperse FePt nanoparticles with an average size of 4.11 nm were successfully synthesized via chemical co-reduction of iron acetylacetonate, Fe(acac)3, and platinum acetylacetonate, Pt(acac)2, by 1,2hexadecanediol as a reducing agent. Also (FePt)87Zn13 nanoparticles with average size of 4.24 nm were synthesized using the same method. The structural and magnetic properties of the prepared samples were respectively studied by XRD, TEM and VSM. L10 FePt ordered phase is formed at lower annealing temperature by addition of Zn. The (FePt)87Zn13 nanoparticles starts ordering after annealing at 400 °C, whereas FePt nanoparticles at 400 °C are still disordered alloys with superparamagnetic behavior. Additive Zn is very effective in decreasing the ordering temperature and enhancing the chemical ordering in (FePt)87Zn13 particles, So that coercivity 5200 Oe was measured for (FePt)87Zn13 nanoparticles annealed at 500 °C, compared with 1800 Oe for samples without Zn. This reduction in ordering temperature significantly reduces FePt particle coalescence and loss in positional order.  相似文献   

17.
Encapsulation of FePt nanoparticles in carbon nanotubes (CNTs) was attempted using a thermal chemical vapor deposition technique with a Fe/Pt bilayer catalyst. The metal nanoparticles were encapsulated at the tip of multi-walled CNTs. A selected area electron diffraction measurement of the nanoparticles at CNT tips indicated that diffraction spots attributed to an ordered L10 phase. Magnetic hysteresis loops indicated existence of magnetic nanoparticles having various coercivities. From numerical fittings assuming that high and low coercivity components contributed to the hysteresis loops, the high coercivity component was estimated to reach 11.3 kOe (902 kA/m).  相似文献   

18.
We have examined the magnetic anisotropy of the "heat-treated FePt nanoparticles" annealed in a magnetic field. The magnetic easy axis of the "heat-treated FePt nanoparticles" is found to be three-dimensional (3-D) random and a partial ordering fct structure is observed before annealing in the presence of a magnetic field. The value of M/sub r//M/sub s/ obtained is 0.5. After annealing in the presence of a magnetic field, the M-H loop indicates that the easy axis is oriented preferably in the perpendicular direction than along the in-plane direction. The value of H/sub c/(//)/H/sub c/(/spl perp/) at 10 K is 0.62 (1410 Oe/2250 Oe). The value of M/sub r//M/sub s/(/spl perp/) is 0.58 at 10 K larger than the value of M/sub r//M/sub s/(//). Therefore, a weak magnetic easy axis orientation is fundamentally possible on the chemically synthesized FePt nanoparticles. We have studied the recording characteristics of a 3-D random nanoparticle medium using a GUZIK spinstand and observed the recorded patterns for the medium by imaging with a magnetic force microscopy.  相似文献   

19.
Monodisperse FePt nanoparticles have been synthesized chemically. The spherically shaped as-made nanoparticles were 6.0?nm in size and they were single crystals. The average composition of these particles is determined as Fe(50)Pt(50). The nanoparticles did not show any sign of sintering after annealing at 800?°C for up to 120?min. The texture and order parameters of as-made and annealed FePt nanoparticles were determined from azimuthally integrated selected area electron diffraction patterns. The close to perfect [Formula: see text] axial texture in as-made particles degraded with increasing annealing time, in contrast to the order parameter, which showed a monotonic dependence on annealing time. With 60?min annealing, a 0.8 degree of chemical?ordering has been achieved and the particles were sinter-free as observed from bright field images.  相似文献   

20.
During ordering process of face centered tegragonal (fct) L1(0) phase of the FePt alloy, there exist three growth variants of axes (001) from original disordered fcc structured phase. When FePt film was directly deposited on the MgO (001) substrate, the variant perpendicular to the film plane grew, resulting in a low out-of-plane coercivity of 1.3 kOe. By using Cu underlayer, two variants lying in the film plane got same chance to grow, which caused an in-plane perpendicular alignment of the tetragonal axes of FePt L1(0) phases. The crystallographic relationship between Cu and FePt layers is Cu (100)<100>//fct FePt (100)<100>. A high in-plane coercivity of 4.6 kOe was obtained due to the high density of micro-defects (mcro-twins, anti-phase boundaries, etc.) in the film plane. This work demonstrated a way of selecting the growth variants of ordering process to adjust the magnetic properties of the ordered FePt thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号