首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conducting polymer nanocomposites with extremely low percolation threshold   总被引:1,自引:0,他引:1  
Abstract. This article gives a brief review of our work on conducting polyaniline nanocomposites which exhibit extremely low percolation threshold, ca. <003 vol.%. The nanocomposites are essentially blends of nanoparticles of HCI doped polyaniline (PANI) with conventional polymers. The nanoparticles (<20 nm) were prepared by sonicating a suspension of sterically stabilized conoidal PANI particles in solutions of conventional polymers. The sonication process breaks down the stable colloid particles into nanoparticles. The latter are unstable and they aggregate fractally to yield nanocomposites with extremely low percolation threshold.  相似文献   

2.
Experimental data suggests that well dispersed nanoparticles within a polymer matrix induce a significant interphase zone of altered polymer mobility surrounding each nanoparticle, which can lead to a percolating interphase network inside of the composite. To investigate this concept and the nature of the interphase, a two-dimensional finite element model is developed to study the impact of interphase zones on the overall properties of the composite. Thirty non-overlapping identical circular inclusions are randomly distributed in the matrix with layers of interphase surrounding the inclusions. The simulation results clearly show that the loss moduli of composites are either broadened or shifted corresponding to the absence or presence of a geometrically percolating interphase network. Our numerical study correlates well with experimental data showing broadening of loss peaks for unfunctionalized composites and a large shift of the loss modulus for functionalized nanotube polymer composites. Further, our results indicate the existence of a gradient in properties of the interphase layer and that incorporating this gradient into modeling is critical to reflect the behavior of polymer nanocomposites.  相似文献   

3.
The paper deals with analysis of morphology and electrical properties of (nano)composite films. It describes a computer simulation tool for morphological and transport analysis of the films. Two models of composite structures are prepared — a hard disk and soft disk model. Their morphology is studied by the covariance, Quadrat Counts method, and Voronoi tessellation. Some specific characteristics of the methods are introduced. The electric properties are studied by the Monte Carlo simulations via tunnel charge transport. The results for d.c. conductivity as well as in case of changing voltage are done.  相似文献   

4.
Polymer nanocomposites offer a basis for the design and manufacture composite materials with greatly enhanced properties at relatively low volume fractions of the included phase. One underlying mechanism, thought to contribute to these properties is the presence of an interfacial region, ∼15 nm thick, between the polymer matrix and included particles. The size of the interface makes relatively little contribution to the effective properties of composites with micro-sized particles but, because its thickness is comparable to the size of the nanoscaled included phase, its potential impact within nanocomposites is much greater. In particular, percolated nano-microstructures may result at volume fractions below theoretical thresholds, due to connectivity achieved through rod-interface-rod, or ‘pseudo-percolation’, contact. In this work the influence of the interface layer is incorporated into estimates of critical volume fraction through an excluded volume model. Results show a significant reduction in the range of critical volume fractions. These values are incorporated into a mean-field micromechanics model to illustrate mechanical percolation through changes in predicted effective elastic composite properties.  相似文献   

5.
The grafting of poly(ethylene glycol)-block-polyacrylonitrile (PEG-b-PAN) amphiphilic block polymer onto multi-walled carbon nanotubes (MWCNTs) was achieved by combination of coupling reaction and redox radical polymerization. The chemical structure and yield of the resulting grafted polymer were characterized and confirmed by FT-IR and TGA. Transmission electron microscopy (TEM) images clearly indicated that the nanotubes were coated with a polymer layer. The concentrated DMF dispersions of MWCNT-g-(PEG-b-PAN) nanocomposite were stable for months, the viscoelasticity being monitored by rheometer. MWCNT-g-(PEG-b-PAN) hybrid nanocomposite membranes were fabricated by phase inversion in a wet process. The results showed that high concentration of MWCNTs could be dispersed in the polymer matrix. The morphology and surface hydrophilicity characteristics of the membrane could be controlled by the composition of MWCNT-g-(PEG-b-PAN) nanocomposite membrane.  相似文献   

6.
7.
《Composites Part A》2007,38(3):983-993
Electrically conductive composites of poly(methyl methacrylate) and carbon nanofibers (CNF) were prepared in a low-shear chaotic mixer. These materials showed a percolation threshold of approximately 2 wt.% CNF compared to 6 wt.% for materials prepared in an internal mixer under comparable conditions of mean shear rate. It was found in materials prepared by chaotic mixing that nanofibers were pulled out of the bundles and oriented along the flow directions to produce electrically conductive networks. Electrical conductivity showed great sensitivity to mixing time around percolation threshold and remained almost unchanged with prolonged chaotic mixing above the percolation threshold. Thermal, thermo-mechanical and mechanical properties of the composites were investigated.  相似文献   

8.
Adding a small amount of conductive high aspect one-dimensional nanomaterials such as carbon nanotubes and carbon nanofibers to the initially non-conductive polymeric matrix can induce an insulator to conductor transition which has both scientific merit and application importance. The critical fiber concentration necessary for this transition is called the percolation threshold, which is determined by the filler shape and size. This study investigates the filler waviness effect on the critical behavior of composite conductivity, since the high aspect ratio fillers in actual composites are often bent and entangled instead of being straight. Individual filler was modeled by a linked three straight-segment components with three-dimensional (3D) bending characteristics. In addition, 3D Monte Carlo method has been used to simulate the random distribution of the fillers. Statistical analyses of the fiber networks reveal waviness influence on the percolation threshold in terms of the average contacts per fiber with other fibers. The critical number of average contacts per fiber (B c) for percolation strongly depends on the waviness and deviates substantially from identity for straight fillers. The study demonstrates that the semi-analytic excluded volume theory cannot be used to predict the percolation threshold until the correct B c value is determined.  相似文献   

9.
Small amounts of organoclays in different sizes and concentrations were added into thermotropic liquid crystalline polymer (TLCP) by a combination method of ultrasonication, centrifugation, and solution casting (and shear-induced phase separation). Four kinds of organoclay-modified TLCP composites were obtained. TC3 UP was a kind of organoclay which displayed a marked shear-induced phase separation phenomenon at 190 °C and higher temperatures. TC3 UP could be separated into a TLCP-rich part, TC3 white, and an organoclay-rich part, TC3 dark. TC3 white was an organoclay-modified TLCP with fully exfoliated organoclay of a uniform size of 15–25 nm well dispersed in the TLCP. TC3 dark had a typical intercalated model structure with some TLCP molecules confined in organoclay galleries. TC3 FS was an organoclay-modified TLCP with organoclay of comparable size to that of the fully extended TLCP molecule, i.e., 85 nm. The organoclay layers dispersed into the polymeric matrix as a few randomly organized organoclay layers or stacks of layers in the quiescent condition in organoclay-modified TLCPs. The larger organoclay size or higher concentration of organoclay in the composites (such as, TC3 UP and TC3 dark) caused a greater proportion of the layers or stacks be hydro-dynamically impeded in the quiescent state, resulting in the filler–filler interaction becoming important and in fact dominating the long-term viscoelasticity of the composites. Additionally, the ease with which the organoclay structure could be altered by flow was considerably enhanced, primarily because of filler–filler interactions. Organoclay size has primary effect on the liquid crystallinity of TLCP. Small or comparable organoclay size with the fully extended TLCP molecule in TC3 white and TC3 FS has weak or negligible negative influence on the liquid crystallinity of TLCP, while larger organoclay size totally damages the liquid crystallinity of TLCP. The morphologies, liquid crystallinity as well as the linear and non-linear viscoelastic behaviors of organoclay-modified TLCPs have been characterized in detail.  相似文献   

10.
Electrical and rheological properties of nanocomposites based on poly(methyl methacrylate) (PMMA) and multiwalled carbon nanotube (MWCNT) were studied from view points of double percolation by adding crosslinked methyl methacrylate-butadiene-styrene (MBS) copolymer particles to lower percolation threshold concentration of MWCNTs. It was found that the critical concentrations of MWCNTs for the percolation in the nanocomposites decrease and then increase with increasing the MBS contents of the nanocomposites. It is postulated that the addition of MBS at low concentrations results in double percolation of MWCNT and the significant decrease of critical concentration for the percolations. However, adding MBS particles in large amounts results in limited space for the distribution of MWCNTs and less efficient dispersion of the MWCNTs and the increase of the critical concentrations of MWCNTs for the percolations. Rheological properties and change of T(g)s reflect large interfacial areas in the well dispersed nanocomposite and were also interpreted to support the speculations for the effects of MBS contents and MWCNT concentrations of PMMA/MWCNT nanocomposites.  相似文献   

11.
Zhao J  Sun H  Dai S  Wang Y  Zhu J 《Nano letters》2011,11(11):4647-4651
Instantaneous electrical breakdown measurements of GaN and Ag nanowires are performed by an in situ transmission electron microscopy method. Our results directly reveal the mechanism that typical thermally heated semiconductor nanowires break at the midpoint, while metallic nanowires breakdown near the two ends due to the stress induced by electromigration. The different breakdown mechanisms for the nanowires are caused by the different thermal and electrical properties of the materials.  相似文献   

12.
Zhang W  Tong L  Yang C 《Nano letters》2012,12(2):1002-1006
Nanostructures with precise control of sizes and shapes, intrinsic read-out signals for tracking, and flexible surface chemistry for bioconjugation can offer an excellent system to study interaction between nanomaterials and cells. In this paper, a new nanobio system based on functionalized silicon nanowires (SiNWs) was developed. Using the intensive and intrinsic nonlinear optical signal of SiNWs, we visualized the interaction between the folate and amine group functionalized SiNWs and cells by monitoring the cellular binding and uptake of SiNWs in real time. We demonstrated that the strong specific ligand-receptor interaction between folate on NWs and folate receptors on CHO-β cell membranes expedited agglomeration of folate modified SiNWs on cells and internalization of NWs. Such specific targeting was further confirmed through control experiments done with normal CHO cell without folate receptors. Weaker nonspecific charge-charge attraction led to longer time required for amino group modified SiNWs to be bound on cell membrane. No effective accumulation was noticed for unmodified SiNW with native oxidized surface layer. In addition, we also observed the binding was independent of length for NWs ranging between 2.5 and 8.0 μm. Uptake of NWs highly depended on length and NWs longer than 5 μm were difficult to be internalized. Our results provided an insight of cellular interaction with 1-dimensional nanomaterials.  相似文献   

13.
In this work, conducting polymers poly(3,4-ethylenedioxythiophene) (PEDOT), PEDOT/carbon nanotubes (CNTs), and PEDOT/reduced graphene oxide (RGO) were prepared via an in situ chemical vapor phase polymerization (VPP) process. Experiment results showed that PEDOT and PEDOT nanocomposites were uniformly constructed in oxidant and oxidant nanocomposite films through a modifying template effect. The VPP PEDOT and its nanocomposites were built on aluminium film as supercapaitor electrode materials and electrochemical capacitive properties were investigated by using cycle voltammetry and charge/discharge techniques. The VPP PEDOT exhibited a specific capacitance of 92 F/g at a current density of 0.2 A/g. The VPP PEDOT composites consisting of CNTs and RGO displayed specific capacitances of 137 and 156 F/g, respectively, at the same current density. For VPP nanocomposites, more than 80 % of initial capacitance was retained after 1,000 charge/discharge cycles, suggesting a good cycling stability for electrochemical electrode materials. The good capacitive performance of the conducting polymer nanocomposites are contributed to the synergic effect of the two components.  相似文献   

14.
Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species with the excellent mechanical properties of certain commodity polymers. Here we investigate bicomponent blends comprising semicrystalline regioregular poly(3-hexylthiophene) and selected semicrystalline commodity polymers, and show that, owing to a highly favourable, crystallization-induced phase segregation of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor can be reduced to values as low as 3 wt% without any degradation in device performance. This is in stark contrast to blends containing an amorphous insulating polymer, for which significant reduction in electrical performance was reported. Crystalline-crystalline/semiconducting-insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer itself.  相似文献   

15.
We report the effect of filler incorporation techniques on the electrical and mechanical properties of reduced graphene oxide (RGO)-filled poly(methyl methacrylate) (PMMA) nanocomposites. Composites were prepared by three different techniques, viz. in situ polymerisation of MMA monomer in presence of RGO, bulk polymerization of MMA in presence of PMMA beads/RGO and by in situ polymerization of MMA in presence of RGO followed by sheet casting. In particular, the effect of incorporation of varying amounts (i.e. ranging from 0.1 to 2 % w/w) of RGO on the electrical, thermal, morphological and mechanical properties of PMMA was investigated. The electrical conductivity was found to be critically dependent on the amount of RGO as well as on the method of its incorporation. The electrical conductivity of 2 wt% RGO-loaded PMMA composite was increased by factor of 107, when composites were prepared by in situ polymerization of MMA in the presence of RGO and PMMA beads, whereas, 108 times increase in conductivity was observed at the same RGO content when composites were prepared by casting method. FTIR and Raman spectra suggested the presence of chemical interactions between RGO and PMMA matrix, whereas XRD patterns, SEM and HRTEM studies show that among three methods, the sheet-casting method gives better exfoliation and dispersion of RGO sheets within PMMA matrix. The superior thermal, mechanical and electrical properties of composites prepared by sheet-casting method provided a facile and logical route towards ultimate target of utilizing maximum fraction of intrinsic properties of graphene sheets.  相似文献   

16.
This paper reports a comparative study on structure-property relationship of acrylic rubber (ACM)/silica, epoxidised natural rubber (ENR)/silica and poly (vinyl alcohol) (PVA)/silica hybrid nanocomposites prepared by sol-gel technique under different pH levels (pH = 1.0–13.0), probably for the first time. The initial concentration of tetraethoxysilane (TEOS) (used as the precursor for silica) was kept at 45 wt%, and tetrahydrofuran (THF) for ACM/silica and ENR/silica while water for PVA/silica were taken as solvents. TEOS to water mole ratio was maintained at 1:2 for the rubber/silica systems to accomplish the sol-gel reaction. The structure of the resultant hybrid composites was determined by using electron microscopy, Fourier Transform infrared spectroscopy and solubility. Dynamic mechanical and mechanical properties were also investigated. The silica particles were found to exist as nanoparticles (average diameter <100 nm) at low pH (≤ 2.0) beyond which these aggregate, although the amount of silica generation was not strictly influenced by the various pH conditions in all the systems. These nanocomposites were optically clear and showed superior mechanical reinforcement over the micro-composites containing aggregated silica structures with lower optical clarity. The nanocomposites exhibited higher storage modulus both at the glassy and the rubbery regions as compared to those micro-composites. The loss tangent peak heights were also minimum and the Tg shifted to higher temperature for those nanocomposites. The maximum improvement of mechanical properties was observed with the PVA/silica nanocomposites due to higher level of interaction between the hydroxyl groups of PVA and the silanol groups of the silica phase.  相似文献   

17.
Copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc) nanowires were fabricated by vapor deposition. The nanowires were studied by scanning electron microscopy and transmission electron microscopy. Field emission properties of these nanowires were studied. The field emission properties were strongly dependent on the substrate temperature and the material used, and the best results are obtained for β-phase CuPc nanoribbons. Different dependences of field emission properties on the substrate temperature were obtained for the two materials investigated. The obtained results are discussed.  相似文献   

18.
W.Y. Tong  A.M.C. Ng 《Thin solid films》2007,515(13):5270-5274
Copper phthalocyanine (CuPc) nanowires were fabricated by organic vapor deposition. The nanowires were studied by scanning electron microscopy, X-ray diffraction, and absorption spectroscopy. The effect of the nature of substrate (glass, Si, indium tin oxide, fluorine doped tin oxide) and its temperature on the morphology and properties of the fabricated nanowires was studied. Deposition of a thin CuPc film before the nanostructure growth ensured high yield of CuPc nanowires for all the substrates except Si. The nanowire size and crystal structure were mainly determined by the substrate temperature, with α-CuPc nanowires obtained at the lowest temperature (∼ 190 °C) and β-CuPc nanowires obtained at higher temperatures (above 200 °C).  相似文献   

19.
A new percolation situation has been found in metal-dielectric nanocomposites containing ferromagnetic components. For a certain concentration of metal atoms, the vectors of spontaneous magnetization of individual nanoparticles exhibit a correlated behavior. As a result, a structure containing a very large number of ferromagnetic nanoparticles shows magnetization reversal in a macroscopic nanocomposite volume in a single giant Barkhausen jump.  相似文献   

20.
The paper reports the results of a project aiming to obtain multifunctional binary and ternary polymer nanocomposites with enhanced mechanical and anti-microbial properties. To this end a DGEBA-based epoxy resin is loaded using montmorillonite clays and later used as matrix for glass fibre reinforced laminates. Both binary and ternary nanomodified specimens are manufactured and subjected to mechanical testing. An accurate analysis of the effect of nanomodification on the biological activity is carried out as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号