首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline nickel matrix composites reinforced with the nanosized ceria particles have been synthesized by cathodic pulsed electrodeposition. The reinforcement is synthesized by the high energy ball milling (HEBM) technique. Both the reinforcement and composites have been characterized by XRD, TEM and SEM coupled with EDS. The microhardness of the composites containing different volume fractions of ceria have been evaluated and compared with that of pure nanocrystalline nickel deposited under the same conditions. The results show that the hardness of the composite is significantly higher than that of the nanocrystalline pure nickel.  相似文献   

2.
This paper investigates the physical and mechanical properties of copper‐nickel alloy (at 50 wt.%–50 wt.%) and pure copper, mixed with various types of reinforcement materials such as carbon nanotubes (0.5 wt.%–2 wt.%) as nanoparticles, silicon carbide (1 wt.%–4 wt.%) as microparticles. The acquired composite specimens characteristics were estimated such as microstructure, density, electrical and thermal conductivity, hardness, and compression stress properties to determine the suitable reinforcement percentage that has the best physical and mechanical properties with different main matrix material whether copper‐nickel mechanical alloying or pure copper powder. The micron‐sized silicon carbide and nanosized carbon nanotubes were added to improve the mechanical and physical properties of the composite. The electrical and thermal conductivity of pure copper alloy enhanced compared with the copper‐nickel alloy matrix material. The hardness and compression yield stress of both pure copper and copper‐nickel composites have enhancement values and for copper‐nickel base composites hardness and compression yield stress have enhanced with the most positive enhancement values to examined an optimum percentage of reinforcing material.  相似文献   

3.
Ni-matrix composite coating containing AI2O3 nano-particles is prepared by brush plating. The effects of the nano-particles on the microstructure, microhardness and tribological properties of the composite coating under the lubrication of a diesel oil containing sand are investigated. The results show that the microstructure of the composite coating is finer than that of the pure nickel coating due to the codeposition of the nano-particles. When the nano-particle concentration in the electroplating bath reaches 20 g/L, the microhardness, and wear resistance of the composite coating is as much as 1.6 times and 1.3-2.5 times of those of the pure nickel coating respectively. The main hardening mechanism of the composite coating is superfine crystal grain strengthening and dispersion strengthening. The composite coating is characterized by scuffing as it slides against Si3N4 under the present test conditions.  相似文献   

4.
Magnesium based materials due to their inherently low density and ensuing potential to exhibit high specific mechanical properties are actively sought for weight-critical structural application. In the present study, elemental and nickel reinforced magnesium materials were synthesized using an innovative disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the composite samples showed uniform distribution of nickel particulates in the matrix material, good interfacial integrity of magnesium matrix with nickel particulates and Mg-Ni based intermetallics, and the presence of minimal porosity. Physical properties characterization revealed that addition of nickel as reinforcement improves the dimensional stability of pure magnesium. Mechanical properties characterization revealed that the presence of nickel reinforcement lead to significant improvement in hardness, elastic modulus, 0.2% yield strength and UTS while the ductility was adversely affected. The results further revealed that the combination of 0.2% yield strength, UTS, and ductility exhibited by nickel reinforced magnesium remained much superior even when compared to high strength magnesium alloy AZ91 reinforced with much higher volume percentage of SiC. An attempt is made in the present study to correlate the effect of nickel as reinforcement and its increasing amount with the microstructural, physical and mechanical properties of magnesium.  相似文献   

5.
Mg/1.1Al2O3 nanocomposite was synthesized using solidification process called disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization showed that reasonably uniform distribution of reinforcement leads to significant grain refinement of commercially pure magnesium matrix and effectively restricted the grain growth during high-temperature tensile test. Physical properties characterization revealed that addition of nano-Al2O3 particulates as reinforcement improves the dimensional stability of pure magnesium. Mechanical properties characterization revealed that the presence of thermally stable nano-Al2O3 particulates as reinforcement leads to a significant increase in room temperature microhardness, dynamic elastic modulus, 0.2% yield strength, UTS and ductility of pure magnesium and efficiently maintained the strengthening effect up to 150 °C. Fractography revealed that fracture behavior of magnesium matrix change from brittle to mixed ductile mode with activation of non-basal slip system in room temperature to complete ductile mode at high temperature due to the presence of nano-Al2O3 particulates.  相似文献   

6.
A study has been made of the incorporation of aligned alumina whiskers (from both USA and French commercial sources) and aligned alumina fibres (0.01 in. diameter) into nickel and the resultant tensile properties at 20 and 1100° C studied. Conditions have been established which preclude significant whisker/fibre break-up, densify the matrix and promote chemical bonding between the whisker/fibre and the matrix. The factors which influence these aspects are described, viz. impurities on the whisker surface, classification of the whiskers, deposition of nickel on aligned whiskers or fibres from pure nickel carbonyl, hot-pressing conditions to promote bonding and effect densification.High strengthening efficiency (up to 75%) can be ascribed to the use of whiskers or fibres in tests at 20° C but at high temperatures (1100° C) this efficiency is poor, 10% or less. This poor efficiency is ascribed to the rupture of the chemical bond between whisker or fibre and matrix during the first reheat after composite manufacture. Strong chemical bonding is vital for a successful composite since in any practical ceramic whisker/fibre-metal matrix composite the inherent disparity in thermal expansion coefficients acts to disrupt the chemical bond. Moreover, even if the chemical bond was sufficiently strong not to rupture as a result of the thermal expansion disparity, the implication of increased chemical affinity to produce the strong bond would lead to complete erosion of a whisker in times of about 100 h. Even in the case of fibres with a large diameter (0.010 in.) there is sufficient degradation of mechanical properties although without apparent loss of the cylindrical form to markedly reduce composite properties.Apart from any economic consideration, therefore, it is concluded on technical grounds that the reinforcement of metals by ceramic whiskers or fibres for high temperature (>700° C) use is impossible.  相似文献   

7.
《Materials Letters》2007,61(11-12):2356-2358
A process of thermal spraying and laser remelting of a Ni-clad graphite powder to form a coating on Ti–6Al–4V substrate was carried out. A good coating without cracks and pores was obtained. The microstructure of the coating was examined using SEM and EDS. The coating mainly consists of austenitic nickel as matrix and TiC dendrite as reinforcement. During the laser remelting process, a reaction between C and Ti occurred, which lead to an in-situ synthesis of TiC reinforcement in the coating. The microhardness of the coating was measured using a Vickers hardness tester. The average microhardness of the composite coating is HV 1000 and it is two times greater than that of the Ti–6Al–4V substrate.  相似文献   

8.
原位自生Ti3 Al金属间化合物基复合材料的微观结构   总被引:1,自引:1,他引:0  
采用原位自生(XD)法制备Ti3Al金属间化合物基复合材料,对复合材料的XRD,OM和SEM的分析结果表明,Ti-17Al-0.5C复合材料的基体为Ti3Al,增强相为Ti3AlC,且增强相在基体中按一定的方位排列,Ti-17Al-1.5(2.0)C复合材料的基体为Ti3Al,增强相由心部TiC矣包覆层Ti3AlC双层组成,随着含C量的增加,增强相由不发达的树脂晶变为等轴晶,对合金进行微力学探针测试表明,增强相TiC和Ti3AlC的显微硬度和弹性模量均大于基体Ti3Al,随着C含量的增加,合金中增强相和基体的显微硬度和弹性模量无明显变化。  相似文献   

9.
Chitosan-like bio-derived polymers possess a number of useful biological properties, but their mechanical and thermal durability needs to be improved to produce performance-driven materials. Inorganic particles are commonly used as fillers to provide reinforcement in polymer matrix. Zeolites are commercially important inorganic materials that are used extensively as adsorbents, ionic exchangers, and catalysts. One form of zeolite, known as molecular sieve 5A, is a Na+ and Ca2+ exchanged zeolite type A with a 1:1 Si:Al ratio. In this study, the role of zeolite as a reinforcing filler in a chitosan/malonic acid composite was investigated. The thermal stability, mechanical properties, and morphology of the chitosan matrix and chemical interactions within the composites were evaluated. It was observed that zeolite significantly improved the tensile strength, modulus, and thermal stability of chitosan and created a fibrous network-like morphology in the chitosan matrix. This study revealed that the inclusion of zeolite molecular sieve 5A improves the performance of chitosan-based biomaterials.  相似文献   

10.
为提高碳纤维/环氧树脂复合材料的刚性和热尺寸稳定性,首先利用短切碳纤维制备了碳纤维网络增强体(CFNR),并将其与环氧树脂复合制备了CFNR/环氧树脂新型复合材料。然后,分别利用扫描电镜和热机械分析仪对CFNR/环氧树脂复合材料的微观结构和热力学性能进行了表征。结果表明:CFNR/环氧树脂复合材料中有明显的网络节点,即碳质粘结点;CFNR/环氧树脂复合材料具有较好的导电性、较高的刚性和较低的热膨胀性,其弹性模量分别为常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的3倍和6倍,平均热膨胀系数(60~200℃)分别为常规短切碳纤维/环氧树脂复合材料的1/15及纯环氧树脂的1/40;随着温度升高,CFNR/环氧树脂复合材料、常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的弹性模量均因环氧树脂变软而降低,当温度高于80℃时,CFNR/环氧树脂复合材料的弹性模量分别约为常规短切碳纤维/环氧树脂复合材料的7倍和纯环氧树脂的近70倍。研究结论可以为开发高刚性、低膨胀聚合物基复合材料提供实验依据和理论指导。  相似文献   

11.
Aluminium matrix composite is highly demanded in various industries due to its low density and good mechanical properties as most commonly studied for metal matrix composite. The properties of the composite be improved with the addition of reinforcement significantly such as silicon carbide, aluminium oxide, and boron carbide that can be mixed easily to metal matrix composite. The study of crystalline rice husk silica reinforced AA7075 aluminium chips on mechanical properties were investigated. The rice husk ash was burned at 1200 °C and it was characterized in the crystalline phase by conducting x-ray diffraction test. The mechanical properties of aluminium matrix composite were obtained by microhardness and compression tests. Results of mechanical properties for the addition of rice husk silica up to 7.5 wt.% composition of crystalline rice husk silica showed increase value of microhardness and compression strength which are the highest value of 75.94 HV 0.1 and 443 MPa, respectively compared to another aluminium matrix composite. Hence, based on investigation to crystalline rice husk silica reinforced aluminium, it has good potential to improve the mechanical properties of aluminium matrix composite which were dependent to the composition of crystalline rice husk silica reinforcement in aluminium matrix composite.  相似文献   

12.
邵阳  陈刚  赵玉涛  张振亚  侯文胜 《功能材料》2012,43(8):1012-1015
用Mg-4%Si合金、纯Cu、纯Mg、Cu-38%Y合金经普通铜模铸造方法制备了一种原位颗粒增强Mg60Cu30Y10块体非晶合金复合材料。运用XRD以及EDS确定其颗粒为CuYSi相,采用SEM-EDS对颗粒的形貌、大小及成分进行了分析,并对Mg60Cu30Y10块体非晶合金复合材料的硬度及热稳定性进行了研究。结果表明,原位生成的CuYSi颗粒尺寸细小(10μm左右),形状规整并且均匀分布在非晶合金基体上;与Mg60Cu30Y10块体非晶合金相比,CuYSi颗粒的生成使得非晶合金复合材料的硬度增加102.5HV,ΔTx增加6.1K。  相似文献   

13.
In the present work, an indigenously developed low cost modified stir casting technique is developed for the processing of 6061 Al‐B4C composites containing high‐volume fraction of boron carbide particles (up to 20 vol. %). The influence of varying reinforcement content on the spatial distribution of boron carbide in the aluminum matrix is qualitatively characterized using scanning electron microscope. At a lower volume fraction of reinforcement, wide particle free zone and large interparticle spacing were observed in the matrix while the composite with high reinforcement content displayed relatively homogeneous and discrete particle distribution. X‐ray diffraction analysis confirms the presence of only aluminum and boron carbide diffraction peaks, indicating that no significant reaction occurs during composite processing. The tensile behavior of composites revealed that strength and ductility are influenced by varying particulate content. The quantitative analysis of strengthening mechanism in the casted composites showed that higher volume fraction of boron carbide lead to larger values of thermal dislocation strengthening, grain size and strain gradient strengthening. The morphology of fracture surfaces reveals the presence of dimple network and the average size of dimples gradually decreases with the increase in particulate content, which indicates the co‐existence of ductile and brittle fracture.  相似文献   

14.
Electroless‐nickel plated ZrO2 (NCZ) particles have been used to produce a functionally graded nickel‐electroless‐nickel plated ZrO2 composite coating. So, electroless‐nickel plated ZrO2 particles concentration was continuously increased from 0 to an optimum value in the electroplating bath (Watt's bath). The substrate was ST37 steel and the thickness of the coating was approximately 50 μm. Also a uniformly distributed nickel‐electroless‐nickel plated ZrO2 composite coating has been manufactured as comparison. The composite coatings were characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Structure and phase composition were identified by X‐ray diffraction analysis. Microhardness of the coatings was evaluated by employing a Vickers instrument. Three‐point bend test was carried out to compare the adhesion strength of the coatings. Dry sliding wear tests were performed using a pin‐on‐disk wear apparatus. The electrochemical behavior of the coatings was studied by electrochemical impedance spectroscopy. The microhardness measurements showed that, with increasing the co‐electrodeposited electroless‐nickel plated ZrO2 particle content in the nickel matrix, the microhardness increases from interface towards the surface of the functionally graded composite coating. Bend, wear and electrochemical test results confirmed that the functionally graded composite coating has higher adhesion, wear resistance and corrosion resistance as compared with the uniformly distributed coating. This has been attributed to lower mechanical mismatch between coating and substrate in functionally graded composite coating with respect to the uniformly distributed one.  相似文献   

15.
In the present work, CuZrAl metallic glass particles were synthesized by mechanical alloying method. High relative density Al-based composites (ABCs) reinforced with different volume fraction of CuZrAl particles have been fabricated by spark plasma sintering (SPS) technique. The microstructures, mechanical properties and corrosion resistance in seawater solution of the ABCs were investigated. The sintered products are all composed of fcc-Al, Al3Zr and CuAl2 phases. For CuZrAl addition, bright and network precipitates are clearly observed in the Al matrix. On account of the interdiffusion of Al and Cu atoms between matrix and reinforcement, the ABCs present the good interfacial bonding. Compared with SPS-ed pure Al bulk, ABCs possess the excellent mechanical properties. It is mainly ascribed to the second phase strengthening, continuously distributed precipitates, high relative density or bonding interface, and grain refinement strengthening. Thereinto, combined with a degree of plastic strain, the composite with 20?vol% CuZrAl reinforcement reveals the best micro-hardness (290?HV), and the highest yield strength and fracture strength of 408 and 459?MPa, respectively. Moreover, the ABCs bear the better pitting resistance with wide passive region in seawater solution.  相似文献   

16.
In this paper, spark plasma sintering (SPS) of multi‐walled carbon nanotube (CNT) reinforced aluminum matrix composites is reported. Ball milling of the Al‐CNT mixture with polyacrylic acid (PAA) dispersion agent followed by SPS resulted in uniform dispersion of CNTs in dense composite compacts. Significant improvement in microhardness, nanohardness, and compressive yield strength was observed with 2 wt% CNT reinforcement in aluminum matrix composites. The Al‐CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self‐lubricating effects of CNTs.  相似文献   

17.
利用真空熔烧工艺制备了WCP-NiCrBSi/耐热钢复合材料,棒状增强相WCP-NiCrBSi均匀分布于基体表层,实现了复合材料的"硬韧匹配"。利用SEM、EDS和显微硬度等手段,对复合材料增强相和界面的微观组织结构进行了表征。在环-盘式试验机上对复合材料的高温磨损性能进行了研究,并与基体材料进行对比。结果表明,增强相WCP分布均匀,NiCrBSi合金在凝固过程中生成了γ-Ni(Ni3Si)、Ni-B、Cr-B 和多元共晶物相。复合材料的增强相与基体之间为良好冶金结合,没有裂纹、气孔等缺陷。由于界面元素的互扩散,在增强相一侧发生了等温凝固,生成了γ-Ni固溶体层; 在基体一侧的扩散影响区内弥散析出了大量的Fe-Cr-B化合物。在室温至600℃温度范围内复合材料的耐磨性都优于基体材料,复合材料的耐磨性优势在室温下最大,并随着温度的升高而逐渐减小。室温下,由于WCP凸出于磨损表面阻止了金属材料之间的直接接触,复合材料的磨损机制为轻微粘着磨损。在300℃和600℃下,由于磨损表面氧化物膜的形成,WCP-NiCrBSi/耐热钢复合材料的磨损机制转变为轻微氧化磨损。  相似文献   

18.
Microcapsules containing oil are potential candidate materials for preparing electrocomposite coatings with excellent tribological properties. In the present study, the preparation of oil-encapsulated microcapsules and electrodeposition of Ni-microcapsule composite coating are presented along with the properties of the coating. In situ interfacial polymerization method was used for the preparation of lubricating oil-encapsulated urea-formaldehyde microcapsules. The synthesized microcapsules were incorporated into the nickel matrix by electrodeposition using Ni-Watts bath. The Ni-composite coating containing microcapsules exhibited smaller Ni grain size, higher microhardness and lower surface roughness compared to plain Ni coating. Electrodeposited Ni coating containing oil-encapsulated microcapsules exhibited improved tribological properties with lower wear loss and coefficient of friction compared to plain nickel coating.  相似文献   

19.
以纳米管(MWCNTs)和纯钛为原料,用微波烧结法原位合成TiC增强钛基复合材料,研究了这种材料的组织和性能并探讨了TiC增强相的生成机理.结果 表明,微波烧结时MWCNTs与Ti原位生成TiC增强相.MWCNTs的添加量(质量分数,下同)低于1%时TiC呈现颗粒状且分布均匀,Ti基体致密;MWCNTs的添加量高于1....  相似文献   

20.
The effect of a 20vol % alumina microsphere particulate on the age-hardening characteristics of a 6061 Al matrix composite was investigated — based on microhardness, electrical resistivity and X-ray mapping — and the composite is compared to the unreinforced 6061 Al alloy. It is shown that this ceramic reinforcement can affect the age-hardening behaviour of the matrix alloy by significantly accelerating the kinetics of precipitation. This acceleration is related to a decrease in nucleation time and to an increase in the precipitate-growth rate. The relative amounts of age-hardened precipitates are also observed to be affected by reinforcement addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号