首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
矿山等地下硐室施工通常采用工程爆破的方式进行开挖,在工程爆破等动力荷载作用下岩石存在动力硬化现象。利用分离式霍普金森压杆装置对砂岩岩样进行了5组不同应变率下的冲击试验,在此基础上系统分析了入射波、反射波和透射波等试验数据,绘制出动态抗压强度与应变率的散点关系图、峰值应变与应变率的散点关系图、动态应力-应变曲线图,并得到砂岩在不同应变率下的动力硬化因数,分析了砂岩在不同应变率下的动态力学特性及动态抗压强度与应变率的关系,并对不同应变率下岩石样本的破坏形态进行了归纳分析。  相似文献   

2.
在不同的冲击荷载下,岩石会破碎成不同尺寸的块体或颗粒。为了对动态荷载下岩石的吸能特性和动态破碎块体的尺度特征进行定量研究,采用分离式霍普金森压杆系统(SHPB)对煤矿深部砂岩进行了动态压缩试验。得到了不同冲击荷载下岩石试件的动态压缩强度规律,分析了入射能对试件吸收能的影响和应变率效应。在此基础上,利用3D扫描技术、数字图像处理技术得到破碎块体的三维扫描模型,探讨了砂岩试件破碎块体尺度特征与吸收能量的关系。研究表明:砂岩试件的动态抗压强度和吸收能都具有明显的应变率效应,动态抗压强度和动态应变率近似呈线性关系,而吸收能则呈指数型关系;在不同的入射能量下,试件吸收的能量有所不同,吸收能随入射能呈线性增长;在应变率为54~221.9s-1范围内,3D扫描技术能对砂岩破裂块体进行高精度数字重构;随着冲击荷载和输入能量的增大,试件破碎块体的形状逐渐丰富,破碎块体的粒径逐渐减小,比表面积逐渐增大,试件的破碎形态由大块体破断向小块体破碎转变。砂岩材料的破碎成形和能量耗散是材料的率效应机制。  相似文献   

3.
为研究冲击强度对岩石动态力学特性的影响,以改装的霍普金森压杆(SHPB)装置对砂岩进行了不同冲击强度下的动力学试验,测得了动态应力-应变曲线和应力波波形。然后,基于试验数据分析了冲击强度对砂岩强度、应变特性以及能量耗散规律的影响。结果表明:动态应力-应变曲线未出现压密阶段直接进入弹性阶段,冲击强度越大,应力-应变路径越长;岩样以破碎形态为主,破碎程度与冲击强度呈正相关;随着冲击强度增大,平均抗压强度和平均应变呈线性增长,而平均应变率呈指数增长;平均抗压强度和平均弹性模量随平均应变率呈线性增加。冲击强度越大,入射能和反射能值显著提高而透射能变化不明显,透射系数和反射系数分别呈幂函数增长和对数降低。砂岩吸收能随冲击强度和平均抗压强度分别呈指数关系和对数关系。由此表明,不同冲击强度对砂岩应变特征、强度特征以及能量耗散具有显著影响,适当增加冲击强度可有效提高砂岩吸收能,进而提高破岩效果。  相似文献   

4.
地下工程岩体爆破开挖过程中,动荷载和地下水对工程岩体的安全稳定具有显著影响。为揭示动荷载和含水率对岩石的影响特性,采用改进的霍普金森压杆试验装置,用4种不同的冲击速度,在6种含水率工况下对红砂岩进行冲击压缩试验,根据试验中采集到的3组应力波信号,利用三波法将其转化为岩石的动态应力-应变曲线,得到了岩石的动态峰值应力、极值应变和平均应变率等参数。试验结果表明:相同动荷载作用下,随着含水率增加,动态峰值应力逐渐减小,且二者具有良好的指数函数关系;随着含水率增加,岩石动态极值应变线性增加;随着含水率增加,岩石的平均应变率呈指数型增长。随着冲击速度的增大,动态峰值应力、动态极值应变和岩石的平均应变率均增大。研究结果有助于对深部岩石的稳定性进行监测,为工程中的突水突泥等灾害的发生机理及影响因素的研究提供一定参考。  相似文献   

5.
为研究不同岩性岩石动态拉伸力学性能的差异,选用岩石工程中较为常见且波阻抗差别较大的3种岩石:红砂岩、灰砂岩和花岗岩,利用分离式霍普金森压杆(SHPB)试验系统分别对3种岩石巴西圆盘试件进行不同冲击速度下的动态劈裂拉伸试验,同时结合超高速数字图像相关(DIC)试验系统对试样表面应变场变化过程及其动态拉伸破坏过程进行了观测。对比研究分析了3种岩石的拉伸应变场和剪切应变场的动态演化规律,不同冲击速度和不同加载率下3种岩石的动态拉伸强度、拉伸敏感系数和破坏形态的变化规律,以及波阻抗对岩石动态拉伸力学性能的影响。研究结果表明:(1) 3种岩石破坏形态的差异主要体现在圆盘试件两端的楔形局部剪切破碎区,且局部剪切破碎区面积受冲击速度的影响。(2) 3种岩石动态拉伸强度随冲击速度和加载率的增大均表现出良好的线性增大的关系,且相同冲击速度下,花岗岩加载率和动态拉伸强度>灰砂岩>红砂岩。(3)红砂岩拉伸强度对加载率最敏感,花岗岩次之,灰砂岩敏感性最弱,且随冲击速度和加载率的增大,3种岩石拉伸敏感系数均呈线性增大关系。(4)相同应力波作用下,岩石的应力波传播过程、加载历史以及动态拉伸力学性能受岩...  相似文献   

6.
岩石试件SHPB劈裂拉伸试验中能量耗散分析   总被引:5,自引:0,他引:5  
利用直径50 mm变截面分离式Hopkinson压杆(SHPB)试验装置,对厚径比0.5的煤矿砂岩巴西圆盘试件进行对径加载,采取改变驱动气压的方法实施不同加载速率的动态劈裂拉伸试验。研究了砂岩试件动态劈裂拉伸破坏过程中的能量构成和耗散特征;尝试从能量角度出发,对砂岩试件动态劈裂拉伸破坏形态、平均应变率效应和动态拉伸应力强度进行能耗分析;发现试件吸收能量绝大部分耗散于岩石的损伤演化和变形破坏,可以较好地反映砂岩试件在冲击载荷作用下的抗拉性能变化。结果表明:砂岩试件拉伸应力强度与吸收能量随平均应变率增加近似对数关系增加,表现出显著的应变率相关性。研究成果可为岩石类脆性材料动态拉伸力学性能研究提供参考。  相似文献   

7.
为研究加载应变率对硬岩的力学性质与能量吸收、储存和耗散的影 响,本文对砂岩试样开展了不同应 变率下的单轴压缩试验,试验结果表明砂岩试样的峰值应力、峰值应变和弹 性模量均随着加载应变率的增大而增大, 但加载应变率对砂岩试样的单轴抗压强度影响显著。 研究了砂岩试验在不 同阶段变形过程中的能量吸收与耗散规 律,得到了砂岩试样在变形前期以弹性应变能的形式储存能量,同时又以损 伤演化等耗散能量,在变形后期以剧烈地 释放能量为主,且加载应变率越大,能量释放率越快。 研究结果表明能量耗 散是导致砂岩试样强度降低的本质原因, 基于能量耗散与裂纹损伤之间的内在联系,得到了加载应变率越大砂岩试样 的损伤应力比、损伤应变与损伤应力也 越大。 从能量吸收与耗散的角度研究硬岩损伤破裂规律,可从本质上揭示 硬岩在外荷载作用下的变形破坏机制,可 为实际工程提供参考。  相似文献   

8.
为了解月球永久阴影区月壤的动态力学性能,以玄武质模拟月壤进行动态冲击试验,研究不同负温、不同含水率及不同应变率加载下模拟月壤的动态应力-应变曲线特性、动态抗压强度和破坏特征,分析动态抗压强度、动弹性模量与模拟月壤负温、含水率、应变率的关系。试验结果表明:动态抗压强度与应变率呈正相关关系;破坏形态类型主要为锥形剪切破坏和颗粒状粉碎破坏;破碎块度分布具有良好的分形特征。研究结果能为未来月球资源研究提供参考。  相似文献   

9.
节理岩体在高应变率下的破坏模式及动态强度特征是工程爆破中的重要问题。以往对岩体的研究主要停留在静载作用下,且主要是完整岩石,其强度理论也大多运用静载的强度理论,而对节理岩体的动荷载特性认识不够。作者运用SHPB装置对几种典型几何特征的节理岩体进行了大量实验,从几何特征、长径比效应、应变率等不同方面分析了节理岩体力学特性的影响规律,得出了应力一应变关系曲线,对认识工程岩体的动态力学性质,改善工程爆破质量有一定意义。  相似文献   

10.
为了建立基于能量原理的分段砂岩非线性损伤方程,对砂岩进行不同围压条件下三轴试验,并分析其峰后力学特性,得出以下主要结论:围压增大提高了砂岩扩容起始点对应的应力水平,延缓了砂岩的非线性扩张,围压在一定程度上提升岩石承载力;同时,减弱岩石的脆性破坏程度,增强延性,使得试样趋于形成单一剪切面,破坏后试样较为完整。考虑不同围压条件下,岩石峰后阶段主要沿着断裂面移动、滑动,仍然具有一定承载力,岩石形变率逐渐非线性减小。假定应力-应变关系变化规律满足三次多项式,通过能量原理建立非线性损伤模型,可以更好地反映岩石应力-应变关系与破坏情况,最终通过对比发现试验曲线与拟合曲线拟合度较高。  相似文献   

11.
冲击荷载下轴压对峰后破裂砂岩力学特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘洋  刘长武 《煤炭学报》2018,43(5):1281-1288
针对深部工程围岩常处于峰后破裂状态且遭受动力扰动影响的特点,利用动静组合加载SHPB实验装置对经静态压缩制备的峰后破裂砂岩进行冲击压缩试验,开展一维动静组合加载下破裂岩石的力学特性研究。试验中预先设置轴向静载为8,24和48 MPa三个系列,然后进行不同应变率下冲击加载,研究轴向静载对峰后破裂砂岩动力学特性的影响。对比完整砂岩试验结果表明:轴向静载8 MPa和相近应变率条件下,峰后破裂砂岩组合强度与冲击强度均低于完整砂岩组合强度与冲击强度,两者变形模量相差不大,但峰后破裂砂岩单位体积吸收能大于完整砂岩单位体积吸收能。轴向静载相同时,峰后破裂砂岩组合强度与冲击强度均随着应变率的增大而增大;轴向静载不同时,峰后破裂砂岩组合强度随着轴向荷载的增大而增大,而冲击强度随着轴向静载的增大先增大后减小。随着轴向静载的增大,峰后破裂砂岩单位体积吸收能也随之增大。动静组合加载下峰后破裂砂岩呈剪切破坏模式,且原始裂纹影响破裂面的扩展方向。  相似文献   

12.
轴压和循环冲击次数对砂岩动态力学特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
利用岩石动静组合加载SHPB试验装置,研究不同轴压的岩石在循环冲击过程中动态强度和变形特性。首先,对具有不同轴压的岩石进行循环冲击;进而考察了在循环冲击过程中岩石的典型动态应力-应变曲线;最后,研究轴压和循环冲击次数对岩石动态强度和变形特性的影响。研究结果表明:随着循环冲击次数的增加,加载段和第2卸载段的变形模量、峰值应力、恢复的应变与峰值应变之比和恢复的应力与临界卸载应力之比值逐渐降低;平均应变率、峰值应变、第1卸载段的变形模量以及单位体积吸收能逐渐增大。当轴压为其单轴抗压强度的22%,51%和65%时,岩石对外部冲击载荷的抵抗能力与冲击次数间的关系整体上呈现“平缓发展-急剧下降”,当轴压为0或为其单轴抗压强度的87%时,岩石抵抗冲击的能力随冲击次数的增加基本呈现匀速降低的趋势。当轴压为其单轴抗压强度的22%时,抵抗外部循环冲击载荷的能力最高。  相似文献   

13.
为研究冻融作用下含不同冲击损伤砂岩的动力学特性,对完整及不同初始损伤的泥质粉砂岩进行冻融 后开展冲击加载试验,研究冻融作用对含初始损伤泥质粉砂岩的宏观动力学性能和损伤演化规律。 结果表明:含初 始损伤砂岩的纵波波速、弹性模量与冻融周期呈负相关;含Ⅰ、Ⅱ、Ⅲ、Ⅳ级初始损伤砂岩的纵波波速随冻融周期的增 大分别下降了 8. 1%、11. 9%、11. 2%、16. 8%,初始损伤等级越高的砂岩在冻融作用下纵波波速下降幅度越明显;冻融 损伤和初始损伤耦合作用下砂岩弹性模量的变化速率逐渐增加,抵抗形变的能力逐渐下降,塑性逐渐增大;在冻融作 用下含初始损伤砂岩的动态抗压强度与应变率呈指数衰减;初始损伤的存在加剧了冻融损伤对岩石的劣化作用,加 快了砂岩自身宏观动力学性能的弱化速率。  相似文献   

14.
为分析含水煤样在动静组合加载下的力学性质,利用改进SHPB和RMT-150试验系统对义马矿区二1煤样进行动静组合加载、静载对比试验。结果表明:静载加载,煤样的应力-应变关系形态与动静组合加载应力-应变关系形态明显不同,煤样的峰值强度、弹性模量随饱水时间增加而降低,饱水3 d和7 d煤样抗压强度软化系数分别为0.66和0.52;动静组合加载,煤样动态峰值强度随饱水时间增加而降低,饱水3 d和7 d抗压强度软化系数分别为0.65和0.60,动态弹性模量却逐渐升高,提高系数分别为1.15和1.37,与饱水砂岩试验结果相比不同;动静组合加载煤样随饱水时间增加煤样破坏颗粒度逐渐减小,水对煤样动态破坏影响较显著;基于翼形裂纹受压扩展原理,推导出动静组合加载下饱水煤样动态强度计算公式;煤样动态强度比静态强度试验结果提高10%~30%,表明动静组合加载下煤样的变形、强度特征与煤样自身结构、含水状态和加载方式多重因素有关。  相似文献   

15.
在预裂爆破中,采用合理的空气比和不耦合系数能有效控制爆炸荷载对岩体的破坏。利用Autodyn有限元动力分析软件,研究预裂爆破中空气间隔不耦合装药产生的爆炸荷载对岩石的损伤特性和孔壁冲击波峰值的变化规律。通过改变装药空气比,分析空气间隔装药产生的爆炸冲击波沿孔壁的压力分布,以及间隔装药时不耦合系数对孔壁冲击波峰值和应力波传播的影响。结果表明:连续装药条件下,爆破近区的压力峰值高于岩石动态抗压强度,离炮孔越远应力波衰减的越慢;在空气间隔装药条件下,岩石的损伤深度随空气比的增大而减小,孔内空气柱周围的岩石破坏不明显;在间隔不耦合装药时,不耦合系数越大,冲击荷载的强度越低,孔壁的损伤半径也越小。  相似文献   

16.
基于层叠模型组合煤岩体动态力学本构模型   总被引:3,自引:0,他引:3       下载免费PDF全文
解北京  严正 《煤炭学报》2019,44(2):463-472
为研究冲击载荷下组合煤岩的动态力学特征,利用75 mm的分离式霍普金森压杆(SHPB)实验系统,对不同组合比煤岩样(砂岩∶煤∶砂岩分别显1∶1∶1,2∶1∶1,1∶1∶2,1∶2∶2)进行不同速率(4.590~8.791 m/s)的冲击加载实验,获得了组合煤岩的动态应力-应变曲线,结合煤、岩本构的研究成果和层叠模型原理,并充分考虑了组合煤岩体在动态破坏过程中的应变率相关性和损伤特性,构建了7参数组合煤岩层叠本构模型。研究结果表明∶① 不同组合比煤岩的弹性阶段和塑性阶段持续时间不同,不同组合比煤岩的应力应变曲线前期均呈现出明显的非线性;② 组合煤岩动态冲击屈服强度随应变率的增大而增大,随煤的占比增大而减小;③ 构建的7参数组合煤岩层叠本构模型数值拟合曲线与实测动态本构曲线具有较好的一致性,拟合参数分析发现在中应变率(110.41~195.49 s-1 )冲击载荷作用下,组合煤岩体损伤软化效应超过应变率强化效应成为主导因素;④ 拟合参数范围和试样冲击破坏特征均表明,组合体试件主要破坏部位以煤体破坏为主,不受组合方式的影响。研究成果为进一步深入认识冲击地压等煤岩动力灾害发生机理和预测预防措施提供参考借鉴。由于组合煤岩冲击破坏SHPB实验条件有限,并未考虑围岩影响,围压下的组合煤岩动态破坏特性有待利用实验和数值模拟手段进一步研究。  相似文献   

17.
王斌  宁勇  冯涛  郭泽洋 《煤炭学报》2019,44(9):2691-2699
外载荷加载速度是影响锚杆支护硐室稳定的重要因素,锚固体加载速度效应的试验研究较少。锚固硐室围岩会更接近单轴受力状态,围岩压力主要为低应变率加载,结合脆性围岩锚杆支护破坏特点,对布设两根相似锚杆的砂岩进行了从0.001~0.100 mm/s等5种低应变率加载速度工况下的单轴压缩试验。试验表明低应变率加载速度对加锚试样和无锚试样力学性质及破裂特征的影响是有差异的。加锚砂岩弹性模量随加载速度增加有轻微提升,所有工况下,锚固砂岩整体轴向变形量仍与无锚砂岩的轴向变形量相近;无锚试样的单轴抗压强度随加载速度增大呈递增趋势,但加锚砂岩强度随加载速度增大出现相对劣化,对加载速度的敏感性相对降低,锚杆加固增强作用减弱;各加载速度下无锚试样均最终表现为拉剪破坏,初始可见表面裂纹均为轴向张拉裂纹;加锚试样随加载速度增加会使最终破裂形式由张拉破坏向拉剪破坏过渡,初始表面裂纹由轴向张拉裂纹转变为剪切裂纹。进一步,从能量理论与加锚岩体声发射特征、锚杆与岩体相互作用等方面探讨了低应变率加载速度增大导致加锚砂岩强度劣化的机制,声发射信号表明高加载速度条件下加锚试样受载初期就会产生较大损伤,耗散能量增加,同时,高加载速度亦使岩体与锚杆间的界面载荷传递不能发挥作用。研究结果表明,锚杆支护下的冲击地压巷道应防范锚固体的扰动失效问题,推广"锚支卸"联合防冲支护措施。  相似文献   

18.
深部开采中爆破、地震波等冲击对不同养护期的胶结充填体稳定性造成破坏,威胁采场安全。为此采用霍普金森杆试验系统对充填体试样进行单次冲击试验,分析爆破荷载下不同龄期掺膨润土全尾砂胶结充填体的动力学特性。试验结果表明:动态冲击曲线存在多个波峰,养护早期(3d、7d)表现为动态强度硬化(峰值应变0.005左右),后期(14d、28d)为动态强度软化(峰值应变0.002左右);充填体DIF与膨润土掺量正相关,与龄期负相关;养护龄期3~14d时,动态抗压强度、吸收能、单位体积吸收能随膨润土掺量的增大呈先降后升趋势(10%为临界点),28d时,两者正相关,养护龄期的延长可以提高充填体吸收能量的能力,增强抗冲击性能;养护早期韧性指数随膨润土掺量的增大而降低,养护后期两者关系表现为正相关且敏感性更高、增幅更显著。  相似文献   

19.
针对层状砂岩的各向异性,探究了冲击荷载作用下层理角度对层状砂岩变形破坏的影响规律。加工制作了含软弱层理的砂岩标准试件,利用霍普金森杆试验系统进行了不同层理倾角下的砂岩动态巴西圆盘试验,并结合数字图像相关方法获得了圆盘试件变形场的演化云图。从破坏结果看,层理面与加载轴线之间的夹角对层状砂岩的变形破坏有显著影响。当软弱层理平行于加载轴线时,圆盘试件在加载端处首先产生应变集中,并随着冲击加载的作用迅速沿层理扩展,最终表现为从圆盘试件加载端向非加载端呈弧线形断裂的特征;当软弱层理垂直于加载方向时,圆盘试件中间首先形成多个应变集中区,表现为在加载轴线与软弱层理相交处萌生多个微裂纹,并在冲击加载的作用下微裂纹沿加载轴线不断相互贯通,最终形成径向扩展的宏观裂纹;当软弱层理面与加载方向成45°时,圆盘试件在加载端处首先沿层理方向形成显著的拉剪应变集中区,由于层理介质的抗拉强度和抗剪强度均低于砂岩基质体,因而表现为试件在拉、剪复合应力的共同作用下从加载端处产生多条沿层理面扩展的裂纹。从试验结果中还可以看出,在相同加载速率下,垂直层理试件的强度最高,水平层理试件的强度最低,倾斜层理试件的强度介于水平层理试件和垂直层理试件之间。随着加载速率的提高,不同层理方向的砂岩动态抗拉强度均呈线性增长的特征,但与无层理砂岩相比,含软弱层理砂岩的动态抗拉强度对加载速率的敏感程度较低。此外,层理角度对砂岩的开裂应变有较大影响,受剪应力的影响,倾斜层理砂岩的开裂应变高于垂直层理砂岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号