首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为研究冲击强度对岩石动态力学特性的影响,以改装的霍普金森压杆(SHPB)装置对砂岩进行了不同冲击强度下的动力学试验,测得了动态应力-应变曲线和应力波波形。然后,基于试验数据分析了冲击强度对砂岩强度、应变特性以及能量耗散规律的影响。结果表明:动态应力-应变曲线未出现压密阶段直接进入弹性阶段,冲击强度越大,应力-应变路径越长;岩样以破碎形态为主,破碎程度与冲击强度呈正相关;随着冲击强度增大,平均抗压强度和平均应变呈线性增长,而平均应变率呈指数增长;平均抗压强度和平均弹性模量随平均应变率呈线性增加。冲击强度越大,入射能和反射能值显著提高而透射能变化不明显,透射系数和反射系数分别呈幂函数增长和对数降低。砂岩吸收能随冲击强度和平均抗压强度分别呈指数关系和对数关系。由此表明,不同冲击强度对砂岩应变特征、强度特征以及能量耗散具有显著影响,适当增加冲击强度可有效提高砂岩吸收能,进而提高破岩效果。  相似文献   

2.
为研究硬煤在动载荷作用下的力学特性,采用分离式霍普金森压杆(SHPB)测试系统开展了径向自由和被动围压2种约束状态下不同冲击速度的硬煤试件冲击压缩试验,研究了硬煤的动态力学特性及其随应变率、约束状态的变化规律,分析了试件的破坏形态,并结合声波测试研究了被动围压时硬煤试件的损伤特性。研究结果表明:冲击速度、约束状态对动态抗压强度峰值和应变率的影响很大,径向自由时动态抗压强度峰值与应变率呈线性增长关系、被动围压时动态抗压强度峰值随应变率的增大而减小;动态抗压强度峰值随冲击速度的增大呈对数关系,随冲击速度的增大,且被动围压时动态抗压强度峰值增长更快;径向自由时,试件的破坏以劈裂破坏和压碎破坏为主,破碎形态和块度取决于冲击速度,被动围压下试件能够保持完整、仅表面和边缘出现裂纹;被动围压条件下,试件的损伤程度与冲击速度呈指数关系。  相似文献   

3.
随煤矿开采深度的不断延深,深部煤体所处的应力环境将逐渐倾向于静水压状态,同时冲击地压、煤与瓦斯突出等典型煤矿动力灾害危害程度不断加大。为研究煤体在不同静水压环境下的动态压缩力学特性,采用主动三轴围压霍普金森压杆试验系统,开展加载率700~1400 GPa/s和3种静水压状态(4 MPa、6 MPa、8 MPa)下煤样动态压缩力学试验研究。研究结果表明:煤样应力应变曲线出现短暂线性弹性阶段,动态弹性模量、动态抗压强度与加载率、静水压限制成正比,动态抗压强度的加载率敏感性与静水压限制成反比;相同加载率下,煤样的破坏应变与静水压大小成正比;冲击加载后煤样宏微观破碎特征表明,随着静水压约束的增强,煤样破碎程度逐渐降低。本研究可为深部煤矿典型动力灾害防灾减灾研究提供参考,对深部煤矿工程布设具有一定的指导意义。  相似文献   

4.
含孔洞层状砂岩动态压缩力学特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李地元  刘濛  韩震宇  周子龙 《煤炭学报》2019,44(5):1349-1358
隧道、矿山巷道和硐室等地下岩石工程中揭露的层状岩体往往具有不同的产状,层理弱面的方向与主要动荷载作用方向存在多种组合,相应的动态各向异性力学特性和变形破坏特征对地下岩石工程安全稳定具有至关重要的影响。针对冲击载荷下倾斜层状岩体中巷道围岩稳定性问题,选取一种层理构造显著的黄砂岩,其中层理倾角φ为层理面与加载方向之间的夹角,加工制备倾角分别为0°,15°,30°,45°,60°,75°和90°的7组预制中央圆形孔洞板状试样(尺寸为宽度60 mm×高度60 mm×厚度15 mm),在75 mm杆径分离式霍普金森压杆(SHPB)试验平台上进行冲击压缩试验,并使用高速摄影仪实时记录试样动态裂纹扩展演化过程,研究不同层理倾角条件下预制中心孔洞层状岩石的动态力学参数、裂纹扩展演化过程及最终破坏模式等动态压缩力学特性变化规律。结果表明,峰值应力处试样破坏的峰值应变在0. 008 1~0. 012 37变化,随着层理倾角的增加,试样动态抗压强度、弹性模量及峰值应变整体均呈先增大后减小的变化规律;初始起裂裂纹总是从孔洞周边压应力集中处萌生,随后逐渐形成宏观裂纹,宏观裂纹为剪切裂纹或拉剪复合裂纹;倾角0°试样发生局部沿层理和局部穿越层理的复合张剪破坏,倾角15°~45°试样发生局部沿层理和局部穿越层理的剪切破坏,倾角60°~90°试样最终发生穿越层理的类X型剪切破坏;利用正交各向异性板理论计算孔洞周边应力分布,发现随着层理倾角的增加,孔洞周边应力集中系数的峰值也逐渐增大,且层理倾角为0°,15°,30°,45°的试样孔洞周边最大压应力出现在θ(θ为孔洞周边任意一点的极角)为74°,81°,86°,90°及关于原点中心对称的254°,261°,266°,270°处,同时试验中观测到相应的层理倾角试样分别在88°,85°,79°,70°及关于原点对称的271°,264°,262°,252°处萌生剪切裂纹,与理论分析结果吻合较好。层理方向与冲击载荷平行时,层状岩体中巷道围岩对冲击载荷的承载能力最弱。针对钻爆法分台阶开挖硐室或爆破施工中存在近距既有巷道,应合理布置爆破载荷的方向,避免层理方向与爆破载荷之间的夹角过小而导致巷道失稳。  相似文献   

5.
余永强  张文龙  范利丹  龚健  杨蒙  孙亮 《煤炭学报》2021,46(7):2281-2293
在煤矿巷道掘进过程中,巷道围岩在动载作用下变形将会增大,为研究煤系砂岩在冲击荷载作用下的力学特性及能量耗散,以河南陈四楼煤矿巷道围岩中的砂岩为研究对象,利用直径为50 mm的分离式霍普金森压杆试验装置对煤矿砂岩开展单轴单次冲击压缩试验和循环冲击压缩试验,对冲击荷载作用下煤矿砂岩的应变率效应、能量耗散特征和破坏模式等进行分析。研究结果表明:在单轴单次冲击荷载作用下,随着平均应变率的增加,砂岩试样的峰值应力和峰值应变均增大,割线模量逐渐降低,砂岩试样的塑性增加,强度提高;且峰值应变与平均应变率呈线性递增关系,峰值应力近似与平均应变率的1/3次幂呈递增关系;随着平均应变率的增加,砂岩试样的单位体积吸收能呈线性增加趋势,且试样破碎程度不断增大,在压应力持续作用下砂岩试样内部裂纹不断交叉扩展,沿轴向发生劈裂破坏。在循环冲击荷载作用下,随冲击荷载作用次数的增加,砂岩试样的平均应变率和峰值应变均逐渐增大,峰值应力、割线模量和第2类割线模量均随着冲击次数的增加而逐渐降低;在固定冲击气压下进行循环冲击时,随着冲击次数的增加,入射能基本保持不变,反射能和吸收能均逐渐增大,透射能逐渐减小,砂岩试样的单位体积...  相似文献   

6.
不同应变率下煤岩冲击动力试验研究   总被引:15,自引:0,他引:15       下载免费PDF全文
刘晓辉  张茹  刘建锋 《煤炭学报》2012,37(9):1528-1534
利用75 mm的分离式霍普金森压杆(SHPB)实验系统,对煤岩进行不同应变率下冲击压缩试验。实验结果表明:煤岩微细观特征复杂,离散性强;煤岩在低应变率下多呈轴向劈裂破坏,高应变率下呈现出压碎破坏;冲击过程中能量随着应变率的增大而增大,耗散能与应变率基本呈弱幂函数关系或线性分布关系;煤岩破碎块度分维与应变率呈线性相关,分形维数在1.7~2.2范围内,应变率越大,块度越小,分形维数越大,煤岩耗散能量越大。  相似文献   

7.
采用霍普金森压杆技术对高应变率下砂岩的动态力学特性进行了研究。实验表明,撞击杆速度为10.4m/s时,砂岩的动态弹性模量为168GPa,为静态弹性模量的3.8倍,其强度也相应提高,并伴有应变率强化效应;在高应变率下,砂岩易发生脆断破坏。  相似文献   

8.
为探究煤在冲击破坏中表现出来的动力学特征,使用直径50 mm分离式霍普金森压杆装置试验系统对煤样进行不同应变率下的冲击破坏实验。结果表明:碎裂过程可以分为4个阶段,分别是压实阶段、线弹性阶段、裂纹扩展阶段、破坏阶段。在不同应变率下,煤样的应变随时间的增加而增加,应变率越大,煤样的应变-时程曲线斜率越大;煤岩的动态变形模量和动态抗压强度随应变率的增大而增大,并在一定范围内波动;煤样冲击破碎块度分布和应变率有明显的相关性。  相似文献   

9.
为研究循环冲击状态下砂岩力学及损伤特性,采用分离式Hopkinson压杆试验装置对红砂岩进行不同入射幅值的循环冲击试验,通过Weibull分布统计损伤模型分析了红砂岩损伤演化规律。研究结果表明:以90 MPa入射应力进行循环冲击试验时,随着循环冲击次数的增加,动态强度先增大后减小,最大应变以及平均应变率则正好相反,第一次冲击有助于提高红砂岩的抗压强度;随着入射幅值的增大,当以100 MPa、110 MPa、120 MPa入射应力冲击时,动态强度、变形模量和循环次数逐渐减小,最大应变和平均应变率逐渐增大,基于Weibull分布的损伤模型可以反映此材料的损伤演化特性,累积损伤随着冲击次数的增加而增大,累积单位体积吸收能与累积损伤规律具有较好的一致性,岩样出现失稳破坏为大块时的累积损伤均在0.8左右,没有明显的变化。研究结果为矿山岩体安全防护及正确评价岩石稳定性提供理论依据。  相似文献   

10.
为研究循环冲击状态下砂岩力学及损伤特性,本文采用分离式Hopkinson压杆试验装置对红砂岩进行不同入射幅值的循环冲击试验,通过Weibull分布统计损伤模型分析了红砂岩损伤演化规律.研究结果表明,以90 M Pa入射应力进行循环冲击试验时,随着循环冲击次数的增加,动态强度先增大后减小,最大应变以及平均应变率则先减小后...  相似文献   

11.
采用霍普金森压杆(SHPB)实验装置对经静态压缩制备的峰后破裂砂岩进行单轴冲击试验。基于SHPB试验能量理论,研究峰后破裂砂岩在动态破坏过程中的能量耗散特征,并与完整砂岩进行对比分析。研究结果表明:动荷载作用下峰后破裂砂岩单位体积吸收能与入射能呈线性关系,且峰后破裂砂岩单位体积吸收能对入射能的敏感性低于完整砂岩;峰后破裂砂岩的破坏形态与试样吸收能量的大小相关,且存在一个吸收能量值使得峰后破裂砂岩和完整砂岩破坏程度的相对性发生改变。  相似文献   

12.
利用RMT-150C电液伺服刚性试验系统和PAC声发射信号采集系统,对典型砂岩在巴西劈裂条件下变形破坏全过程的声发射特征以及不同加载速率对其的影响进行研究.试验结果表明:声发射特征与各变形阶段其内部结构损伤信息的变化是相对应的,声发射参数可表征岩石拉伸破坏微观结构损伤和演化;随着加载速率的增大,AE振铃率和AE能量率都随之增大,峰值处释放的AE能量最大值呈递增趋势,而AE累积能量呈递减趋势,这可能与加载时间有关;砂岩的抗拉强度随加载速率的增大而增大,同步监测AE能量峰值亦随加载速率的提高呈上升趋势,不同加载速率下AE能量峰值的变化能够反映岩石的抗拉能力.  相似文献   

13.
冲击荷载下轴压对峰后破裂砂岩力学特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘洋  刘长武 《煤炭学报》2018,43(5):1281-1288
针对深部工程围岩常处于峰后破裂状态且遭受动力扰动影响的特点,利用动静组合加载SHPB实验装置对经静态压缩制备的峰后破裂砂岩进行冲击压缩试验,开展一维动静组合加载下破裂岩石的力学特性研究。试验中预先设置轴向静载为8,24和48 MPa三个系列,然后进行不同应变率下冲击加载,研究轴向静载对峰后破裂砂岩动力学特性的影响。对比完整砂岩试验结果表明:轴向静载8 MPa和相近应变率条件下,峰后破裂砂岩组合强度与冲击强度均低于完整砂岩组合强度与冲击强度,两者变形模量相差不大,但峰后破裂砂岩单位体积吸收能大于完整砂岩单位体积吸收能。轴向静载相同时,峰后破裂砂岩组合强度与冲击强度均随着应变率的增大而增大;轴向静载不同时,峰后破裂砂岩组合强度随着轴向荷载的增大而增大,而冲击强度随着轴向静载的增大先增大后减小。随着轴向静载的增大,峰后破裂砂岩单位体积吸收能也随之增大。动静组合加载下峰后破裂砂岩呈剪切破坏模式,且原始裂纹影响破裂面的扩展方向。  相似文献   

14.
张钊玮  柳洪杰  肖雄  凌雪  牛蒙晓 《钻探工程》2023,50(S1):149-155
振动碎岩具有能量消耗量低、所需轴向压力小等特点。为提高碎岩效率同时降低成本,进行了振动-加压相结合的碎岩模式研究。本文以红砂岩为研究对象,围绕动静复合加载条件下球齿侵入导致的红砂岩内部裂纹扩展规律开展研究。结果表明,球齿下岩石的破碎程度随着动、静载荷的增大而变大,并且只有当组合载荷峰值达到100 kN时,岩石才会发生明显的体积破碎。在破岩初期,当载荷较小时,岩石倾向于发展为侧向裂纹,岩石损伤成“宽而浅”特点。随着载荷的增大,岩石更倾向于发展中间的深部裂纹,而后才倾向于发展侧向裂纹,即呈“窄而深”的特点。岩石破碎的各项指标受各载荷参数的影响程度存在差异:即在相同的幅值增量条件下,增加动载幅度导致的破碎程度要大于增加相同静载荷时的破碎程度。以上结论可为提高动静载复合破碎硬岩效率、攻克硬岩钻进技术难题提供重要支撑。  相似文献   

15.
将孔隙率引入到多孔介质达西渗流理论中的连续性方程及动量守恒方程,建立均质高孔隙率砂岩非稳定达西渗流数学模型,同时结合实际工程中的水文地质条件,采用数值模拟的方法研究了不同注浆压力下渗流场演化规律及涌水区域水流速度变化。计算结果表明:随着注浆压力的提高,浆液不断驱替砂岩中的孔隙水,有效封堵过水通道;不同注浆压力下巷道涌水区域水流速度变化显著:注浆过程中水流速度降低接近于零,注浆结束后水流速度上升最终达到稳定状态。针对地下工程中高孔隙率砂岩的涌水治理提出了"深部封堵水源、浅层注浆加固"治理原则,通过现场试验,取得了良好治理效果。  相似文献   

16.
为研究不同含水煤样动态拉伸变形破坏过程的能量耗散规律,利用分离式霍普金森压杆(SHPB)试验系统,对不同含水煤样进行冲击加载下的动态劈裂试验,并结合超高速数字图像相关(DIC)试验系统对煤样动态拉伸破坏过程进行观测。基于试验结果分析,获得了煤样破坏过程能量耗散特性随含水率的变化规律,分析了含水率对破碎煤样分形维数的影响。研究结果表明,冲击载荷下应力波是煤样内部大量微损伤结构及原生孔隙、空隙损伤演化的主控因素,煤岩体破碎是一个能量吸收与耗散的过程,随着冲击载荷的增加煤样耗散能密度呈线性增大,但当入射能较小时煤样耗散能密度值相差不大;试样分形维数随加载气压的增加而增加,且增加速率有减小趋势,同种加载气压下,饱和煤样的分形维数最大,干燥煤样的最小;煤样破坏主要以拉伸劈裂为主,破坏裂纹沿加载方向发育,率先在圆盘中部起裂,随后萌生多条次生裂纹,次生裂纹随加载气压的增大而增多,低加载气压下,劈裂裂纹在煤样中的扩展时间较长,扩展速度较慢;基于数字图像技术发现冲击载荷下饱和煤样中部出现多个主应变集中域,且范围逐渐扩大最终沿径向发育贯通。  相似文献   

17.
煤系砂岩动态拉伸破坏及能量耗散特征的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
我国深部开采过程中,围岩处于显著的高应力扰动环境。动载作用下岩石拉伸力学特性的研究,是实现矿井围岩稳定性有效控制及安全生产的重要基础。利用分离式霍普金森压杆(SHPB)试验系统,对煤层顶板砂岩进行动态巴西圆盘试验。研究结果表明:砂岩动态拉伸强度随加载速率的升高逐渐增强,这种依赖性在较高加载速率时更加显著;砂岩动态拉伸破坏经历主裂纹产生、微裂纹发育及裂纹相互贯穿3个阶段;随着加载速率的升高,试样破坏方式逐渐从单一张拉破坏逐渐发展为张拉破坏与局部剪切破坏共存,碎块平均体积逐渐减小,破坏程度逐渐提高;试验过程中,试样破坏所需的耗散能量随加载速率的升高逐渐增加,并且其占输入能量的比例逐渐提高,即砂岩破坏过程中能量利用率逐渐提高。  相似文献   

18.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号