首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
铸坯中MnS夹杂物的形貌及尺寸对钢的性能影响显著,因此了解并调控其析出长大过程具有重要意义。采用连铸坯枝晶生长热模拟试验,观测了U78CrV重轨钢铸坯凝固过程中MnS夹杂的形貌及尺寸变化规律,结合热力学和动力学计算,分析了重轨钢铸坯中MnS夹杂的析出长大行为。热模拟试验表明,重轨钢铸坯中MnS主要在凝固末期析出,多分布于枝晶间隙。其中,柱状晶区中MnS主要呈球形、椭圆形及短棒状,平均等效半径为2.42μm,最大等效半径为4.19μm;等轴晶区中MnS多呈不规则形状,平均等效半径为4.01μm,最大等效半径为7.58μm。热力学计算表明,柱状晶区MnS析出凝固分数为0.97,析出温度为1 663 K,高于固相线9 K;等轴晶区MnS析出凝固分数为0.95,析出温度为1 623 K,高于固相线20 K。动力学分析表明,柱状晶区MnS理论长大半径为2.74μm,等轴晶区MnS理论长大半径为5.98μm,计算结果与试验结果较为吻合。通过比较柱状晶区与等轴晶区MnS的析出时间,讨论了等轴晶区MnS尺寸明显大于柱状晶区的原因。通过降低初始硫含量、减轻铸坯芯部硫元素的偏析以及提高冷却速率,可以有效降...  相似文献   

2.
对易切削钢AISI 1215铸坯中的夹杂物形貌、尺寸进行观察和统计,结果显示铸坯边缘区域为Ⅰ类MnS,中心区域为Ⅱ类MnS.根据Uhlmann的凝固前沿夹杂物析出模型以及铸坯化学成分分析,认为冷却速度和硫元素偏析对MnS夹杂形貌和尺寸分布有着重要影响,冷却速度越快,越易形成Ⅰ类MnS,硫元素偏析越严重越有利于形成Ⅱ类MnS.  相似文献   

3.
大型MnS是引起百米高速重轨夹杂物超标和超声波探伤不合的重要原因.理论计算表明,对于U75V重轨钢,在凝固末期固相分率大于0.98时,MnS才能在液相中析出.利用扫描电镜配合能谱仪分别对铸坯和钢轨试样中Mns夹杂进行了研究.结果表明,铸坯边部是尺寸小于10 μm的球状MnS,中心为尺寸小于30 μm扇形或条状MnS,钢...  相似文献   

4.
为了研究钢液凝固和冷却过程中非金属夹杂物的生成热力学,以U75V重轨钢为研究对象,通过Aspex自动扫描电镜对不同钢液成分的中间包钢水样和连铸坯样进行分析,结合热力学计算,得到了重轨钢凝固和冷却过程中夹杂物的转变机理。研究结果表明,重轨钢中间包内主要为CaO-SiO_2-Al_2O_3-MgO型夹杂物,且夹杂物成分均匀;凝固冷却过程不仅导致夹杂物成分的变化,也会导致相的不均匀性,连铸坯中的夹杂物为CaO-SiO_2-Al_2O_3-MgO-CaS型,夹杂物中CaO含量降低,CaS含量升高,凝固冷却后的夹杂物由CaS、MgO·Al_2O_3以及CaO-SiO_2-Al_2O_3-MgO等多相组成,其中MgO·Al_2O_3相位于CaO-SiO_2-Al_2O_3-MgO相内部,最外层包裹CaS。热力学计算结果与试验结果基本吻合,夹杂物成分差异可能由于热力学和动力学条件不足引起。  相似文献   

5.
通过对钢轨A类非金属夹杂进行不同深度、不同位置的取样检测,发现钢轨A类非金属夹杂评级结果存在一定偶然性。以U75V为例进一步采用Factsage热力学数值模拟及析出热力学理论对MnS非金属夹杂的析出过程进行分析;结合连铸过程钢液冷却凝固特性及实际统计、检测结果对MnS非金属夹杂的析出进行验证,最终得出MnS析出于钢液近乎完全凝固,且主要由于S、Mn偏析形成微区高溶质浓度而析出。以降低钢液氧、氮含量为基础,降低钢液硫含量、夹杂变性处理及铸坯内部质量优化可以抑制MnS非金属夹杂的析出及轧制形变。  相似文献   

6.
 为了深入研究与控制重轨钢中大尺寸MnS夹杂物,针对目前热力学计算MnS析出行为问题,提出在应用时需要根据实际条件做相应的选择进行计算。在比较了目前几个常用的热力学数据后,基于U75V钢中MnS夹杂物形成过程,建立了适合计算MnS夹杂物析出的分段计算方法。研究表明,采用FactSage 6.4商业软件计算MnS析出温度为1 631 K,与平衡热力学参数计算的结果1 694 K相差63 K。该方法可准确预测MnS的析出行为,降低了热力学分析MnS析出的难度。在1 473、1 573 和1 673 K 3个温度下固溶硫质量分数分别为0.000 67%、0.001 67%和0.010 8%。在铸坯轧制之前的开坯和保温温度为1 563 K时,需要将钢中硫质量分数降低到0.001 67%以下,才能有效控制大尺寸的MnS夹杂物。  相似文献   

7.
为了研究重轨钢全流程非金属夹杂物的行为演变,进一步控制重轨钢中夹杂物,提高产品质量。以U75V重轨钢为研究对象,通过对LF-VD-CC工艺重轨钢生产全流程系统取样,结合氧氮分析、钢液成分分析、非金属夹杂物分析以及热力学计算,从夹杂物化学成分、数量及尺寸等方面研究其演变过程。结果表明,U75V重轨钢生产全流程氧氮含量持续降低,最终TO、[N]质量分数分别约为0.001 0%和0.004 0%;LF进站主要为MnO-SiO_2-Al_2O_3型夹杂物,为脱氧产物;LF精炼化渣后,MnO-SiO_2-Al_2O_3型夹杂物转化为CaO-SiO_2-Al_2O_3型夹杂物,BaCaSi和FeSi等合金辅料带入的Ca、Als是产生该结果的主要原因;LF离站时主要为CaO-SiO_2-Al_2O_3-MgO型夹杂物,夹杂物中CaO和MgO含量增加;VD精炼过程CaO-Al_2O_3-MgO型夹杂物基本消失,VD破空至铸坯中主要为CaO-SiO_2-Al_2O_3型夹杂物;钢轨中镁铝尖晶石类夹杂物比例增加,为CaO-SiO_2-Al_2O_3-MgO型夹杂物,热力学计算结果表明钢轨中尖晶石类夹杂物为降温冷却过程中形成,且计算值与实际值总体吻合。  相似文献   

8.
曾亚南  孙彦辉  蔡开科  徐蕊 《钢铁》2014,49(9):38-43
 基于BOF→RH→CSP生产工艺,研究了RH精炼过程钢中夹杂物类型演变及MgO?Al2O3夹杂物形成规律,同时对MgO?Al2O3夹杂物的形成条件进行了热力学计算,借助CFD数值模拟软件研究了RH精炼过程卷渣行为。研究发现,RH精炼过程20和30 min时,[w([MgO])/w([Al2O3])]为0.005~0.020,未发现MgO?Al2O3夹杂物;RH出站后夹杂物[w([MgO])/w([Al2O3])]为0.3~0.5,且RH精炼结束后MgO?Al2O3夹杂物占夹杂物总量的58.4%;另外,RH精炼过程钢液表面速度CFD模拟结果为0.57 m/s,大于临界卷渣速度0.45 m/s,且顶渣成分与夹杂物成分相近,存在卷渣现象。热力学计算表明,钢液与炉渣平衡时钢中[w([Al])]为0.31%~0.37%,[w([Mg])]为0.000 24%~0.000 28%,在MgO?Al2O3生成区域之内。减少RH处理过程卷渣,浇铸过程下渣及控制顶渣和包衬相中MgO质量分数可抑制MgO?Al2O3夹杂物形成。  相似文献   

9.
吕沙  吴光亮 《钢铁》2015,50(7):32-37
 对采用“EBT→LF→VD”工艺路线生产50Cr5MoV锻钢轧辊炼钢过程的全氧质量分数和夹杂物类型与数量进行了分析。结果表明:LF精炼后钢液中[w(T[O])]平均为0.004 7%,VD出站[w(T[O])]为0.001 4%,中间包[w(T[O])]为0.001 55%,铸坯[w(T[O])]为0.001 8%,轧材中[w(T[O])]降低至0.001 0%。LF精炼初期,钢中夹杂物主要是不规则的Al2O3夹杂,其中96.75%的夹杂物尺寸小于10 μm。LF精炼结束后,大量夹杂物转变成以CaO-Al2O3-SiO2为主要成分的0~1 0 μm复合氧化物夹杂。钢水从VD真空精炼炉向中间包转移过程中,由于保护性浇注效果差,二次氧化严重造成钢水夹杂逐渐增多,其中夹杂物主要为球形的[mCaO·nAl2O3]复合夹杂物。铸坯中99.65%的夹杂物尺寸小于10 μm,其中大部分为球形钙铝酸盐夹杂物,还有少量球状硅铝酸钙复合夹杂物。轧材中98.77%的夹杂物尺寸小于10 μm。通过对炼钢过程中各工序的工艺优化,可实现对夹杂物的有效控制, 从而确保50Cr5MoV合金铸钢的产品质量。  相似文献   

10.
在使用 CSP 工艺生产低碳或超低碳钢时,在铸坯中,特别是铸坯宽面的中心经常观察到相当数量的微米级碳覆夹杂物.通过对 CSP 流程不同的钢种铸坯取样,研究了这类夹杂物的结构特点和析出机制.指出碳覆夹杂物呈双层结构,外面包裹一层富碳层、中心为钙铝酸盐或含 CaO 的复合夹杂物.热力学计算结果显示这层富碳物质并非 CaC2.通过对比球墨铸铁中球状石墨的形成条件,指出 CSP 铸坯中存在冷却速度快、S 元素含量低、加钙处理后促球化元素 Ca、Mg 含量相对较高,有大量夹杂物作为形核核心等促进碳覆夹杂物析出的有利条件.C 为易偏析元素,在低碳或超低碳钢铸坯凝固过程中液芯中 C 含量的升高,能够析出球状的碳覆夹杂物.并指出由于碳覆夹杂物的析出,中心钢基体 C 含量降低,碳覆夹杂物析出能够减轻铸坯凝固过程中 C元素的偏析程度.  相似文献   

11.
The law of element segregation of Ti, N, Mn and S, and the sequence of selective precipitation of TiN and MnS inclusions during solidification of molten steel of SWRH82A are studied on the basis of thermodynamics. The origin of large TiN inclusions which affect the titanium inclusions point penalty in SWRH82A wire rod is analyzed based on the research on the distribution characteristics of MnS and large size of TiN inclusions observed on metallographic specimen of SWRH82A steel wire rod. The solidification segregation ratio of Ti is far more than that of N, and the solidification segregation ratio of S is far more than that of Mn. In the range of cooling rate of the continuous casting production, the cooling rate of solidification has little effect on the segregation ratios of Ti, N, Mn and S. MnS inclusions will precipitate earlier than TiN inclusions during solidification of the molten steel of SWRH82A. The large TiN inclusion which is wrapped by MnS in the SWRH82A wire rod may be foreign inclusions and it is not precipitated product during solidification in the molten steel of SWRH82A.  相似文献   

12.
利用经典形核理论和扩散控制长大模型计算分析了重轨钢中MnS粒子析出的动力学行为,计算结果表明,MnS粒子在重轨钢凝固过程以均匀形核和晶界形核为主,主要在凝固末期析出。在设定的重轨钢成分下,计算出MnS的有效形核温度为1 634K,即Mn、S实际浓度积等于平衡浓度积。降低S的质量分数小于5.0×10-5能够推迟MnS接近固相线析出,而对MnS的长大半径影响较小;提高冷却速率从0.14K/s到1.45K/s,连铸坯内柱状晶区中MnS的长大半径比中心等轴晶区的大1个数量级,但对MnS的析出时机无影响。S元素是MnS在凝固过程中粗化长大的控制性环节,在凝固过程冷却速率对MnS粒子长大半径起着决定性的作用。  相似文献   

13.
吕迺冰  马跃  刘珂  王勇  孙齐松  杨接明 《钢铁》2020,55(7):58-64
 为降低大尺寸MnS夹杂物引起的车轴磁粉探伤不合格率,利用第二相析出理论以及铸锭凝固数值模拟计算相结合,计算分析了车轴钢铸锭中MnS生成、长大、熟化规律。计算结果显示,MnS形核核心尺寸与熟化过程尺寸增加均为纳米级,凝固过程MnS的长大决定凝固完成时MnS粒子直径,理论计算得到车轴钢铸锭竖直中心线上冒口、中心、底部位置对应的MnS长大后尺寸分别为156.35、107.37和94.96 μm,中心处MnS尺寸为连铸工艺条件下的2倍,与实际检测结果相符。钢锭凝固过程缓慢是MnS易于长大的直接原因,显著区别于连铸过程。在现有工艺条件下,为控制车轴钢模铸钢MnS尺寸,关键在于降低钢液硫质量分数以及控制硫偏析。控制车轴成品中MnS夹杂物不超过1.5级,需降低钢液中w([S])至0.004 3%以下。  相似文献   

14.
鲁金龙  丘文生  成国光  龙鹄  李尧 《钢铁》2022,57(5):118-128
 汽车控制臂由于形状复杂,切削量大,部分汽车控制臂用钢在加入质量分数0.03%硫元素的基础上,又进一步添加了少量钙元素,希望将钢中常见的细长条状MnS转变为纺锤状(Ca, Mn)S以增加零件的切削性能。然而,硫质量分数为0.03%时,钙元素在钢液中的溶解度很低,冷却和凝固过程单一的纯(Ca, Mn)S生成量极少。因此,提出了利用钢液中生成的含CaO类的氧化物来诱导(Ca, Mn)S在其外围形核长大,形成大量双层结构复合硫化物的形貌控制机理。为了研究最佳双层结构复合硫化物形成机理,选取了3炉不同冶炼工艺的汽车控制臂用钢,利用带能谱分析的电子扫描显微镜观察了铸坯和轧材中典型复合硫化物形貌、成分特征,并手动测量了其尺寸,最后利用热力学软件FactSage计算了钢中夹杂物的生成行为。研究结果表明,当钢中不进行钙处理时,复合硫化物内部氧化物主要为Al2O3或低MgO比例的镁铝尖晶石,外围硫化物为纯MnS,轧制后成细长条状。当钢中进行钙处理后,可以得到两种不同类型的复合硫化物。一种内部氧化物中CaO组元含量较高,外围硫化物主要是高CaS比例的(Ca, Mn)S,基本不变形,成典型的D类或Ds类形貌;另一种核心氧化物中CaO组元低,外围硫化物主要是低CaS比例的(Ca, Mn)S,轧制后成纺锤状。控制钙处理后钢液氧化物中合适的CaO比例使得氧化物既具有高效的硫化物形核能力,又能促进合适CaS比例的(Ca, Mn)S在其外围生成,这是钢中得到大量纺锤状双层结构复合硫化物的关键。当钢中Ca/S比约为0.07时,外围硫化物中的钙元素质量分数为2%~5%最为理想。  相似文献   

15.
对稀土处理C-Mn钢的夹杂物和显微组织进行分析,统计稀土处理C-Mn钢中针状铁素体形核核心尺寸,并将稀土处理钢在不同温度下淬火,研究稀土夹杂物生成和长大过程.实验结果表明:C-Mn钢加入少量稀土后钢中夹杂物从MnS+硅铝酸盐夹杂转变为La2O2S+LaAlO3+MnS+硅铝酸盐夹杂,尺寸得到细化,显微组织也从马氏体+贝氏体组织变成侧板条铁素体、针状铁素体和块状铁素体组织;稀土处理C-Mn钢中针状铁素体有效形核核心的尺寸集中在1~4μm,主要是在钢液中形成,冷却和凝固过程形成的数量较少;稀土夹杂物在钢液温度和冷却及凝固过程容易碰撞黏合长大,上浮从钢液中去除,MnS能在稀土夹杂物颗粒间析出.  相似文献   

16.
 为了研究超低碳钢炼钢过程中夹杂物的具体演变规律,利用夹杂物自动分析系统研究了硫质量分数分别为0.010%和0.015%的两炉次(S100炉次和S150炉次)超低碳汽车外板烘烤硬化钢(bake hardening steel,简称BH钢)从RH终点到铸坯过程中夹杂物形貌、成分、数量、尺寸的演变,并利用X射线荧光光谱仪和X射线衍射仪结合RH精炼渣和中间包覆盖剂熔渣的成分进行对比分析。结果表明,BH钢中夹杂物的主要类型为Al2O3、MnS、Al2O3+MnS和含硅类夹杂物(其中含硅类夹杂物主要是Al Si O夹杂,不包括纯硅、SiC、SiO2)。由于BH钢中锰和硫质量分数较高,凝固过程中MnS大量析出,使得铸坯中MnS夹杂物数量密度和夹杂物总数量密度显著增加。硫质量分数为0.010%和0.015%的两炉次钢在RH和中间包中MnS夹杂物数量密度无明显差异,由于MnS主要在凝固过程中析出,S150炉次在铸坯中的MnS明显多于S100炉次。精炼渣中w((FeO+MnO))较高,w((CaO))/w((Al2O3))比低,会导致RH终点Al2O3夹杂物较多。在浇注过程中,引流砂的流入会导致中间包覆盖剂熔渣中SiO2质量分数增高,造成钢液中Si Al O等夹杂物的数量密度明显增加。结晶器过程中Al2O3夹杂不断聚集长大、上浮去除,使铸坯中Al2O3和Al2O3+MnS夹杂物数量密度减少,尺寸增大。  相似文献   

17.
Due to the inaccurate control of raw materials and operation in the actual production process, the sulfur content and non-metallic inclusions in the steel fluctuate greatly, which seriously affects the cleanliness of steel. To accurately control the size, shape and quantity of non-metallic inclusions such as manganese sulfide in heavy rail steel, the effect of sulfur content on non-metallic inclusions in heavy rail steel was studied in the laboratory. To investigate the changes of the number and morphology of non-metallic inclusions in steel under different sulfur contents, the sulfur content of test steel was increased to 70×10-6, 110×10-6 and 140×10-6, respectively. During the experiment, the test steel was heated and melted in a tubular furnace according to a certain heating rule, and then cooled naturally in the furnace. Subsequently, the non metallic inclusions in steel were scanned by automatic inclusions analyzer, and the relationship between sulfur content and the composition, size, form and quantity of non-metallic inclusions in steel was obtained. The results indicate that most of the inclusions in the steel are composite MnS with oxides as nucleating cores. With the increase of sulfur content, the quantity density of composite MnS, MnO-SiO2 and MgO-Al2O3-SiO2-CaO inclusions increase, while the CaO-SiO2 and MgO-CaO-SiO2 inclusions decrease. The average size of inclusions increases with the increase of sulfur content, and the number of inclusions with different sizes also increases, especially for inclusions with sizes of 2-10μm which increase obviously. During solidification, MnS can be separated from molten steel with sulfur content of (70-140)×10-6. In addition, the higher the sulfur content is, the earlier MnS inclusions precipitate and the more the MnS content is.  相似文献   

18.
摘要:实际生产过程中由于原料和操作控制不精确,钢中硫含量和非金属夹杂物波动较大,严重影响钢的洁净度。为了准确控制重轨钢中硫化锰等非金属夹杂物的尺寸、形态和数量,在实验室开展了硫含量对重轨钢中非金属夹杂物的影响研究。钢中硫质量分数增至70×10-6、110×10-6、140×10-6后随炉冷却,采用全自动夹杂物分析仪对钢中非金属夹杂物进行统计,获得了硫含量与钢中非金属夹杂物成分、尺寸、形态和数量的关系。结果表明,钢中夹杂物大部分为以氧化物为形核核心的复合型MnS;随着硫含量的升高,复合型MnS、MnO-SiO2和MgO-Al2O3-SiO2-CaO型夹杂增多,CaO-SiO2和MgO-CaO-SiO2夹杂减少;夹杂物平均尺寸随硫含量的升高而增大,且不同尺寸的夹杂物均有所增加,尺寸为2~10μm增多最明显;硫质量分数为(70~140)×10-6的钢液凝固过程液相中都能单独析出MnS,且硫含量越高,MnS析出越早,含量越多。  相似文献   

19.
碲处理控制Y15易切削钢中MnS夹杂物形貌   总被引:1,自引:0,他引:1  
张硕  杨树峰  李京社  王林珠 《钢铁》2017,52(9):27-33
 为了研究碲对钢中MnS夹杂物形貌的影响,针对Y15高硫易切削钢,利用SEM-EDS扫面电镜,结合FactSage热力学计算,分析了不同碲质量分数对钢中MnS夹杂物形貌、尺寸、长宽比的影响,同时探讨了稀散金属碲对MnS夹杂物形貌控制的机理。研究结果表明,钢液中加碲后,在MnS夹杂物的外环形成了碲、锰、铁的复合相。钢中加碲后MnS夹杂物的形貌和分布大幅度改变,当碲硫比为0.05时,链状MnS夹杂物大幅度减少,球状MnS夹杂物数量增加;当碲硫比增加到0.2时,链状MnS夹杂物基本消失;当碲硫比增加到0.5时,MnS夹杂物形貌的变化不再明显。钢中加碲显著降低了MnS夹杂物的长宽比,控制MnS夹杂物长宽比最合适的碲硫比为0.2。FactSage计算结果表明,MnTe的生成温度为1 900 ℃,在MnS的析出温度下,MnTe是作为液态夹杂物存在的。在凝固过程中,MnTe和MnS发生固溶现象,由于MnTe为液态,两者形成的固溶体会趋于球形生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号