首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对钢铁企业富余煤气的频繁波动对自备电厂能耗及煤气平衡影响严重,且难以通过建立机制模型进行预测的问题,依据HP滤波和Elman神经网络性质建立了HP(2)-Elman预测模型.并根据自备电厂能源利用的特点,建立拟合模型求解锅炉的经济运行负荷,在此基础上对富余煤气进行优化调度.模型应用表明:所建预测模型对煤气柜位预测平均相对误差小于2.8%,自备电厂煤气供入量30、45、60个点预测平均相对误差分别为1.7%、1.6%、1.6%.根据预测结果进行的优化调度可为煤气柜位调整及自备电厂锅炉负荷分配提供操作依据,一年按照330天计算,可多产蒸汽约100495t,节能约11670481kg标煤.  相似文献   

2.
施琦  赵贤聪  白皓  邢文龙  张志辉 《钢铁》2016,51(8):81-89
 在钢铁生产过程中,消耗的煤炭大约34%会转化为副产煤气。为了提高副产煤气能源利用率,以钢铁企业副产煤气系统为研究对象,利用混合整数线性规划法(mixed integer linear programming,MILP),以操作成本最小化为目标函数,以物料平衡、能量平衡、设备操作参数限制等为约束条件建立富余煤气优化调度模型。与前人的模型相比,对锅炉模型进行改进,不仅提高锅炉模型的调节精度,而且更接近实际情况。此外,为了研究煤气柜和锅炉稳定性,引入煤气柜总标准偏移量(sum of standard deviation volume,[SSDV)]惩罚因子和锅炉总改变量(sum of switching percentage,[SSP)]惩罚因子,并用帕雷托最优法理论确定出最佳的[SSDV]和[SSP。]结果表明,新的优化模型能很好地降低煤气柜和锅炉的波动,维持煤气系统的平稳运行。  相似文献   

3.
针对钢铁企业高炉煤气发生量频繁波动,且难以通过建立机理模型进行预测的问题,结合HP滤波、Elman神经网络各自性质,建立了HP(2)-ENN模型对高炉煤气发生量进行预测。根据企业实际数据应用模型,结果表明,所建模型预测效果良好,与其他常用模型相比,适合高炉煤气发生量的预测,并为合理调度副产煤气提供操作依据。  相似文献   

4.
提出了一种基于对偶优化的核最小二乘(KPLS)方法,把KPLS用最小二乘支持向量机的形式表示.推导了KPLS对偶优化形式的公式,且使其具有最小二乘支持向量机的风格.在初始空间中构造优化问题,应用核技术在特征空间中解对偶问题,这种解与非线性的KPLS具有相似性.实验验证了这种方法的效果,表明了该方法的有效性和优越性.  相似文献   

5.
为了实现钢铁企业高炉煤气、焦炉煤气、转炉煤气的发生量及消耗量预测和优化调度两大功能,采用数据库和模块化设计方法开发了煤气预测及优化调度系统,实现了高炉煤气、焦炉煤气、转炉煤气的日平衡,解决了钢铁企业冬、夏季节性煤气平衡矛盾突出的问题,降低了煤气的放散率,提高了煤气预测精度,为煤气管理提供指导和依据。  相似文献   

6.
针对钨碱煮过程WO_3浸出率预测困难的问题,建立了动态机理模型与最小二乘支持向量机(LSSVM)相结合的并联混合模型,在该混合模型的基础上,构建了碱煮过程优化模型,将动态浸出问题转化为带约束的优化问题,并以粒子群优化(PSO)算法对优化模型进行求解。仿真结果表明,混合模型预测精度高,优化模型效果好,提高了WO_3浸出率,降低了浸出成本。  相似文献   

7.
李红娟  王建军  王华  孟华 《钢铁》2013,48(8):75-81
 钢铁企业自备电厂是副产煤气的主要缓冲用户,在消纳富余煤气、减少煤气放散、实现煤气平衡方面发挥着极为重要的作用。充分考虑自备电厂煤气供入量特点,建立了HP-Elman-LSSVM预测模型,并根据自备电厂能源利用的特点,建立拟合模型求解自备电厂锅炉的经济运行负荷,在此基础上对供入自备电厂的煤气进行优化调度。将该模型应用于具体企业,实现了钢铁企业自备电厂煤气预测和优化调度。模型应用表明:所建模型对自备电厂煤气供入量30、45、60个点的预测平均相对误差分别为1.9%、1.4%、1.4%,能有效解决实际生产中自备电厂煤气供入量预测不准问题。并通过煤气优化调度,自备电厂可大幅度提升蒸汽产率,应用企业每年可多产蒸汽约8.1322万t,折合节约标煤9443.955t。  相似文献   

8.
针对副产煤气系统的运行数据冗余度高、噪声强等特点,提出了一种基于相关向量机算法(relevance vector machine, RVM)的训练样本选择的副产煤气系统预测算法。鉴于RVM算法具有相关样本自动选择的特点,提出采用此算法对原始训练集数据进行训练,以获取的相关向量作为基本训练集;之后利用K近邻算法(K nearest neighbor, KNN)实现对基本训练集合的样本增强,并以此作为新的训练集,从而实现样本的去冗余,提高训练样本质量,提升算法效率与预测准确度。采用国内某钢铁厂高炉煤气数据进行试验,试验效果表明,本文所提的方法可有效针对高炉煤气数据进行样本选择,并以较快的模型训练效率获得较高的煤气柜柜容预测精度,预测结果可为钢铁煤气系统的优化调度工作提供基础。  相似文献   

9.
针对混合煤气加压过程具有非线性、多变量耦合、大滞后及不确定参数众多等复杂特性,提出了一种基于最小二乘支持向量机(least squares support vector machine, LSSVM)模型的混合煤气加压过程在线预测方法。首先,基于某钢厂混合煤气加压工艺分析,选择以混合后煤气压力、风机出口总管压力以及工作机组电流为混合煤气加压过程的预测目标;然后,将局部多项式核函数与全局拉普拉斯核函数相结合,实现了一种兼顾学习能力和泛化能力的混合核函数,并将自适应时刻估计(adaptive moment estimation, Adam)算法用于基于LSSVM预测模型的参数在线优化;最后,基于现场实测数据对预测效果进行验证,结果表明,本文所设计方法可有效提高混合煤气加压过程预测模型的预测精度。  相似文献   

10.
开发了最小二乘支持向量机(LS-SVM)模型,并用于对烧结矿碱度进行预测.仿真结果证明,本模型能在小样本贫信息的条件下对烧结矿碱度做出比较准确的预测.此种模型具有预测精度高、所需样本少、计算简便等优点.和BP神经网络算法相比,最小二乘支持向量机算法有很好的应用前景和推广价值.  相似文献   

11.
The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.  相似文献   

12.
由于部分稳定氧化锫具有优良的物理化学性能,在冶金及材料中有着重要的地位,稳定率是部分稳定氧化锫产品性能的一个重要指标.而部分稳定氧化锆的制备过程具有非线性、多变量、时变等特点,本文采用了支持向量机( SVM)及BP神经网络方法对部分稳定氧化锆的稳定率进行了预测.将热处理温度、保温时间、降温速率、淬火温度及升温速率5个指标(参数)作为模型输入量,部分稳定氧化锆的稳定率作为输出值,分别以48组实验数据作为学习样本,并建立模型,运用该模型预测了5组部分稳定氧化锫的稳定率.实验结果表明,2种模型均具有较好的预测能力,人工神经网络模型预测结果平均误差为1.48%,支持向量机模型预测结果平均误差为0.68%,并且支持向量机预测部分稳定氧化锆的稳定率精度更高,可在实际生产过程中推广应用.  相似文献   

13.
铜转炉吹炼是火法炼铜的关键工序,其终点判断与炉寿、铜产率和直收率紧密相关,目前现有人工经验、仪器测定和物料平衡法等终点判断方法均存在一定的局限性。理论上铜转炉吹炼造渣期终点与渣含Fe是否达标有关,而不同Fe含量渣样呈现不同的图像特征,鉴于此,基于图形识别的特征向量提取原理,分别采用卷积神经网络(CNN)算法与支持向量机(SVM)算法,构建了铜转炉吹炼造渣期渣含Fe预测模型,为图像识别技术在铜转炉吹炼终点判断中的应用奠定数模基础。两种模型的实例分析表明,卷积神经网络的训练集预测准确率98%,测试集预测准确率约50%;支持向量机模型的训练集预测准确率99%,测试集预测准确率62%。  相似文献   

14.
提出的脱机手写体汉字识别系统主要研究特征提取和分类识别两个模块.特征提取模块主要包括采用基于不变矩和弹性网格技术的串行特征融合方法,所得到的特征向量不仅充分反映了手写体汉字的全局和局部特征,而且具有很强的区分表达能力.分类识别模块将神经网络多类分类策略与最小二乘支持向量机相结合,所得到的分类器不仅识别率高、泛化能力强,而且有效地解决了多类分类问题.实验证明本文提出的识别系统能够取得很好的识别效果.  相似文献   

15.
良好的铁水质量是铸铁性能可靠性和稳定性的保证,而铁水中硫(S)含量和硅(Si)含量是衡量铁水质量的主要指标,因此在出铁前精准获取铁水S含量和Si含量具有非常重要的意义。实验提出一种结合主成分分析(PCA)和最小二乘支持向量机(LS-SVM)模型的铁水S含量和Si含量的预测方法。将某钢厂大型高炉的在线采集数据作为研究对象,首先对影响铁水中S含量和Si含量变化因素的数据做主成分分析,求取主成分作为模型的输入变量,其次建立最小二乘支持向量机预测模型对铁水S含量和Si含量进行预测。在S含量预测过程中,正则化参数gam和核函数参数sig分别取20、700时,预测误差最小,其均方根误差为0.001 2,仿真时间为0.423 105s;Si含量预测过程中正则化参数gam和核函数参数sig分别取40、500时预测误差最小,均方根误差为0.023 8,仿真时间为0.079 522s。最后将实验结果与传统最小二乘支持向量机(LS-SVM)和结合PCA的BP神经网络预测模型(PCA+BP神经网络)的结果对比,后两组对比实验关于S含量预测的均方根误差分别为0.001 5和0.001 4,仿真时间分别为1.32...  相似文献   

16.
对钢铁企业高炉煤气系统科学准确的预测,可以为煤气的合理调度提供依据,对企业提高能源利用效率、减少煤气放散和环境污染有着非常重要的意义。针对钢铁企业高炉煤气系统设备工况复杂、煤气量波动频繁、难以准确预测的问题,依据小波分析方法、BP神经网络、最小二乘支持向量机的性质建立了基于数据驱动的高炉煤气的复合预测模型。该模型综合考虑高炉煤气系统生产计划和检修计划,对高炉煤气系统的产耗用户在不同工况下分别建立训练数据集,利用多组模型参数预测高炉煤气产生量、消耗量和缓冲量。利用某大型钢铁企业实际数据进行测试,该模型能够结合设备的实际生产工况变化,实现煤气的准确预测。结果表明,该模型平均绝对百分比误差小于4.95%,对变工况煤气系统有较好的预测效果。  相似文献   

17.
废旧金属回收是工业中金属的重要来源之一,是发展循环经济的重要内容。废旧金属产量巨大,通常表面覆盖杂质,凹凸不平,因此对分类方法的判别能力和计算速度提出较高要求。采用激光诱导击穿光谱技术研究分析了7种废旧金属分类识别问题,包括生铝、熟铝、镁、不锈钢、锌、黄铜与红铜。为了符合现场应用条件,实验中每个样本点只激发一次建立并分析了多种分类模型,包括支持向量机(SVM)分类模型,主成分分析方法结合支持向量机(PCASVM)分类模型,遗传算法结合支持向量机(GA-SVM)分类模型,遗传算法选择特征光谱结合主成分分析方法和支持向量机(GA-PCA-SVM)分类模型,以及遗传算法选择特征光谱结合主成分分析方法和人工神经网络(GA-PCA-BP)分类模型。通过遗传算法选取包含丰富特征的谱段组合与支持向量机方法相结合建立GA-SVM分类模型,490组验证样本分类准确率为93.47%。为了判断该模型的鲁棒性,对一批新样品,在自研的分选系统上以传送带匀速运行的方式进行测试,获取的750组光谱测试数据,分类准确率为88.27%,证明了该分类模型具有很好的移植性和应用性。  相似文献   

18.
废旧金属回收是工业中金属的重要来源之一,是发展循环经济的重要内容。废旧金属产量巨大,通常表面覆盖杂质,凹凸不平,因此对分类方法的判别能力和计算速度提出较高要求。采用激光诱导击穿光谱技术研究分析了7种废旧金属分类识别问题,包括生铝、熟铝、镁、不锈钢、锌、黄铜与红铜。为了符合现场应用条件,实验中每个样本点只激发一次建立并分析了多种分类模型,包括支持向量机(SVM)分类模型,主成分分析方法结合支持向量机(PCA-SVM)分类模型,遗传算法结合支持向量机(GA-SVM)分类模型,遗传算法选择特征光谱结合主成分分析方法和支持向量机(GA-PCA-SVM)分类模型,以及遗传算法选择特征光谱结合主成分分析方法和人工神经网络(GA-PCA-BP)分类模型。通过遗传算法选取包含丰富特征的谱段组合与支持向量机方法相结合建立GA-SVM分类模型,490组验证样本分类准确率为93.47%。为了判断该模型的鲁棒性,对一批新样品,在自研的分选系统上以传送带匀速运行的方式进行测试,获取的750组光谱测试数据,分类准确率为88.27%,证明了该分类模型具有很好的移植性和应用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号