首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isobutene hydration over Amberlyst-15 in a slurry reactor   总被引:1,自引:0,他引:1  
The synthesis of tertiary butyl alcohol (TBA) via isobutene (iB) hydration was studied over Amberlyst-15 sulfonic acid catalyst particles using pure water and aqueous TBA solutions in a bubbling slurry reactor. Preliminary studies to investigate mass transfer effects showed that pore diffusion was present for catalyst particles greater than 165 μm in diameter. Therefore, intrinsic kinetic measurements were made using 90.5 μm catalyst particles and a catalyst loading of 10 kg m−3. The kinetic measurements revealed that iB hydration is a pseudo-first-order reaction with an activation energy of 69 kJ mol−1. Isobutene hydration experiments using TBA concentrations in water revealed a hindering effect of TBA, which indicates that separation of TBA formed by iB hydration in three-phase reactors using catalytic distillation is promising from a process design perspective.  相似文献   

2.
An as-synthesized 8.8wt% Pd/ZnO/Al2O3 catalyst was either pretreated under O2 at 773 K followed by H2 at 293 K or under H2 at 773 K to obtain, respectively, a supported metallic Pd° catalyst (Pd°/ZnO/Al2O3) or a supported PdZn alloy catalyst (PdZn/ZnO/Al2O3). Both catalysts were studied by CO adsorption using FTIR spectroscopy. For the supported PdZn alloy catalyst (PdZn/ZnO/Al2O3), exposure to a mixture of methanol and steam, simulating methanol steam reforming reaction conditions, does not change the catalyst surface composition. This implies that the active sites are PdZn alloy like structures. The exposure of the catalyst to an oxidizing environment (O2 at 623 K) results in the break up of PdZn alloy, forming a readily reducible PdO with its metallic form being known as much less active and selective for methanol steam reforming. However, for the metallic Pd°/ZnO/Al2O3 catalyst, FTIR results indicate that metallic Pd° can transform to PdZn alloy under methanol steam reforming conditions. These results suggest that PdZn alloy, even after an accidental exposure to oxygen, can self repair to form the active PdZn alloy phase under methanol steam reforming conditions. Catalytic behavior of the PdZn/ZnO/Al2O3 catalyst also correlates well with the surface composition characterizations by FTIR/CO spectroscopy.  相似文献   

3.
Catalysts based on CuO/γ-alumina, CuAl2O4/γ-alumina, NiO/γ-alumina, NiAl2O4/γ-alumina and bulk CuAl2O4 have been structurally characterized by BET, porosimetry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their catalytic behaviors have also been tested for the oxidation of 5 g/l phenol aqueous solutions using a triphasic tubular reactor working in a trickle-bed regime and air with an oxygen partial pressure of 0.9 MPa at a temperature of 413 K. The copper and nickel catalysts supported on γ-alumina have surface areas of the same order as the support γ-alumina of ca. 190 m2/g and high active phase dispersions which were also confirmed by SEM, whereas the bulk copper aluminate spinel has a surface area of ca. 30 m2/g. XRD detects the phases present and shows a continuous loss of CuO by elution and the formation of a copper oxalate phase on the surface of the copper catalysts which also elutes with time. The NiO was also eluted but less than the copper catalysts. Only the copper and nickel spinel catalysts were stable throughout the reaction. Phenol conversion vs. time shows a continuous overall decrease in activity for the CuO/γ-alumina and NiO/γ-alumina catalysts. In turn, the copper and nickel spinel catalysts reach steady activity plateaus of 40 and 10%, respectively, of phenol conversion. The bulk copper aluminate spinel shows an activity plateau of 20% of the conversion which is lower than that from the copper aluminate/γ-alumina catalyst due to its lower surface area. Nickel catalysts always have lower activities than the copper catalysts for the phenol oxidation reaction. The copper catalysts drive a mechanism of partial phenol oxidation to carboxylic acids and quinone-related products with very high specific rates, and the nickel catalysts mainly drive a mechanism of CO2 formation with lower conversion but with a potential higher catalyst life. The triphasic tubular reactor using trickle-bed regime largely avoids the mechanism of polymer formation as a catalyst deactivation process.  相似文献   

4.
A new type of gas-solid reactor was developed and characterised in the series of reactor configurations with separate Teed of reactants studied by our group. The novelty in the proposed design lies in the use of a fixed bed of small catalytic particles instead of a porous catalytic membrane. The major advantages of this concept, as opposed to the catalytic membrane reactor, are: (i) the barrier activity and pore structure are more homogeneous (good properties for modelling purposes); (ii) an easier integration of the catalyst bed into the reactor is obtained (the fixed bed can be sealed more easily into metallic modules than a catalytic membrane).

A Pt catalyst supported on La-stabilised alumina pellets (dp = 5 - 50 μm) was used and the catalytic oxidation of carbon monoxide was studied as a model reaction to characterise the reactor. A mathematical model based on the Dusty Gas Model approach was conceived and a good agreement between calculations and experiments was obtained. This fixed bed barrier reactor may thus represent a quicker and easier opportunity, compared to membrane reactors, to check the concept of the separate-feed of reactants with new reactions and catalysts.  相似文献   

5.
Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/γ-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm2 min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/γ-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91–93% and a H2 selectivity of 95–97% have been achieved.  相似文献   

6.
The spectral complex refractive index has been measured over the wavelength range of 1 μm to 12 μm for three coal ash samples. The measurements were conducted by making spectral transmittance and near-normal reflectance measurements on thin, homogeneous slag wafers prepared from the ash samples. The imaginary part of the refractive index k exhibits a large peak near 9 μm, attributable to Si-O vibrational absorption. Three smaller peaks in the k spectra were observed at 1·2μm, 1·8 μm, and 2·8 μm, which have been identified as due to absorption by the ferrous iron ion Fe2+ and the hydroxyl group OH. The dependence of the ash optical properties on ferrous iron content in the wavelength range of 1 μm to 5 μm suggests that both the total iron content of the ash and the ash oxidation state may affect the contribution of ash to radiative heat transfer in coal combustion systems.  相似文献   

7.
A highly stable and active Fe-Mn catalyst for slurry Fischer–Tropsch synthesis (FTS) was prepared and scaled up for the application in the industrial pilot plant at Institute of Coal Chemistry (ICC), Chinese Academy of Sciences (CAS). One Lab-scale catalyst and one scaled-up catalyst are introduced in the present paper. The particle size of the Lab-scale catalyst is about 5–15 μm, while it is increased to 30–90 μm for the scaled-up catalyst. Simultaneously, the morphology of the catalyst was greatly improved after the catalyst being scaled up. Both the Lab-scale and scale-up catalysts show high FTS activity. CO conversion of the Lab-scale catalyst and the scaled-up one are over 70.0% (H2/CO = 0.67, 275 °C, 1.5 MPa and 3000 h−1) and 55.0% (H2/CO = 0.67, 260 °C, 1.5 MPa and 2000 h−1), respectively. The catalysts also possess excellent stability, no obvious deactivation was observed during stable run of 4200 h and 1200 h on stream for the two catalysts. However, the Lab-scale catalyst produced more methane (about 8–10 wt%) and C2–4 (22–30 wt%) and less C5+ hydrocarbon (55–70 wt%). Meanwhile, the hydrocarbon distribution of the catalyst was greatly improved for after the catalyst being scaled up, and the distribution of hydrocarbon products become much preferable. The selectivity to methane was well controlled at about 5 wt%, and the sum of and was increased to 91–93 wt%. On the whole, the scaled-up catalyst satisfies the requirements of the application for FTS in the industrial pilot plant of slurry bubble column reactor (SBCR) at ICC, CAS.  相似文献   

8.
This paper describes the optimization of three processes applied in fabrication of a microstructured reactor for complete oxidation of volatile organic compounds. The first process involves the optimization of the electro discharge machining (EDM) method to produce a set of microchannels with a high length to diameter ratio of 100, with a standard deviation from the average diameter below 0.2%, and with a surface roughness not higher than 2.0 μm. To satisfy these criteria, fabrication of microchannels must be carried out with two machining passes in the Al51st alloy. Then, the effect of several parameters on the anodization current efficiency with respect to oxide formation was studied. The best process conditions to get a 30 μm porous alumina layer in a 0.4 M oxalic acid electrolyte, were found to be a temperature of 1 °C, an anodic current density of 5 mA/cm2, and 23 h oxidation time. At last, the resulting coatings were impregnated with an aqueous solution of copper dichromate followed by drying and calcination at 450 °C to produce active catalysts. The effect of a copper dichromate concentration, number of impregnation cycles (1 or 2), and different after-treatments on catalytic activity and stability in complete oxidation of n-butane were studied. The catalytic activity of the obtained coatings is superior to that of alumina supported pelletized catalysts even at much lower loadings of active metals.  相似文献   

9.
乙烯氧化制环氧乙烷银催化剂所用载体为大孔惰性α-Al2 O3.载体孔道结构对金属银的分布有调控作用,通过选择适宜的孔道结构,采用银胺溶液浸渍,热分解可以获得特定尺寸分布的负载银催化剂.以不同粒度和晶相的氧化铝复配,添加不同的扩孔剂,制备了孔结构不同的三种载体负载银制得银催化剂.对银催化剂进行TGA和SEM分析,并考察其...  相似文献   

10.
A polymer-based catalytic membrane reactor was developed and applied for hydrodechlorination of chlorobenzene as a model compound of ground and waste water contaminants. The catalytically active membrane consists of a non-porous, thin film (about 3–7 μm) of poly(dimethylsiloxane) (PDMS) loaded with nano-sized Pd clusters. They were built-in either directly or as nano-sized, supported catalysts. A composite membrane, consisting of porous poly(acrylonitrile) (PAN) support and a Pd-loaded thin PDMS film, was fabricated on a coating machine. Defect-free membrane envelopes of 0.1 m2 were produced and fitted into a membrane test cell. Gaseous hydrogen as reductant for hydrodechlorination is fed from the membrane’s back side directly to the catalyst, embedded in the PDMS layer. The chemical reactions at the Pd surface are accompanied by absorption of chlorobenzene from the water phase into the PDMS layer and desorption of benzene and HCl back to the water phase. The specific activity of supported catalysts decreased only slightly by PDMS incorporation, e.g., from 31 l/g(Pd) min for Pd/Fe on titania to 16 l/g(Pd) min for the same catalyst built-in a 7 μm thick supported PDMS membrane and measured in the membrane test cell. Directly built-in Pd clusters are less active and more difficult to prepare on a larger scale. Some catalyst deactivation was observed and may be balanced by development of more suited nano-sized supported catalysts.  相似文献   

11.
The present work is focused on the determination of the advantages, bottlenecks and challenges of miniaturized screening systems which are essential to the success of combinatorial high-throughput methodologies in heterogeneous catalysis. Two different reactor configurations with different degrees of miniaturization were developed for the parallel and fast screening of heterogeneously catalyzed gas phase reactions: a monolithic reactor system acting as a multichannel reactor and a microreaction system based on microfabrication techniques. In both cases, a scanning mass spectrometry technique was successfully applied for quantitative product analysis within 60 s per catalyst. Due to its flexibility and high spatial resolution, this three dimensional scanning MS can be used with different and highly parallel reactor arrays. Many experiments were carried out to study the efficiency and reliability of the different screening systems, with the oxidation of methane, the oxidation of CO, and the oxidative dehydrogenation of i-butane as model reactions. Moreover, chip modules in silicon–glass technology having a number of parallel microchannels were developed, each of them containing a different catalyst. Using this approach, “catalysis-on-a-chip” proved in methane oxidation was possible. Finally, a multibatch reactor consisting of a number of parallel mini autoclaves was developed and tested in the liquid-phase hydrogenation of citral in order to overcome the lack of parallel and fast screening procedures for heterogeneously catalyzed gas–liquid reactions widely spread in the chemical industry.  相似文献   

12.
The photocatalytic reduction of the pollutant CrVI over CdS in different crystalline states under visible light illumination was investigated. The photocatalytic activity of heat-treated (HT) and non-heat-treated (NHT) CdS was systematically compared. The CrVI, contained in an aqueous solution of 200 μg/ml, was almost totally eliminated within 30 min when NHT CdS was used as catalyst and displayed a much higher activity than that of HT CdS. The addition of a hole-scavenger such as ethanol, which acted optimally at 10–20%, remarkably improved the activity of HT CdS. The macroscopic difference in photocatalytic activity between NHT and HT CdS was microscopically explained by the differences in their morphological structures, surface states, and light responses which were determined by means of X-ray diffraction, static adsorption and UV-visible spectra. The adsorbance and adsorption state of CrVI was determined on the CdS surface and its photoreducibility was proven by X-ray photoelectron spectroscopy and temperature-programmed desorption. The photoreduction rate of pollutant CrVI, either during experiments indoors or during experiments in sunlight was remarkably improved. 99.3% of the CrVI was reduced from a solution of 200 μg/ml concentration during 1 h of sunlight irradiation. Applications are given for the photocatalytic elimination of CrVI in waste water under sunlight irradiation.  相似文献   

13.
The catalytic oxidation of unsymmetrical dimethylhydrazine (UDMH) by air has been studied in a vibro-fluidized catalyst bed laboratory kinetic setup over catalysts CuxMg1−xCr2O4/γ-Al2O3, 32.9%Ir/γ-Al2O3 and β-Si3N4 in a temperature range 150–400 °C. The catalyst CuxMg1−xCr2O4/γ-Al2O3 was found to be optimal regarding high yields of CO2 and low yields of NOx. A probable mechanism of UDMH heterogeneous catalytic oxidation is proposed. Catalyst CuxMg1−xCr2O4/γ-Al2O3 has been further used in the pilot plant specially designed for the destruction of UDMH. Results of testing the main fluidized bed catalytic reactor for UDMH oxidation and the reactor for selective catalytic reduction of NOx with NH3 are presented. These results prove that the developed UDMH destruction technology is highly efficient and environmentally safe.  相似文献   

14.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

15.
Experiments were performed with two model soot aerosols brought into different forms of contact with Pt aerosol particles, to investigate the effectiveness of this contact in lowering the catalytic soot oxidation temperature. The contact was either generated between individual particles in the aerosol state (Pt-doped soot to simulate a fuel borne catalyst), or by sequential or simultaneous deposition of separately generated soot and Pt aerosols onto a sintered metal filter. (Formation of a soot cake on previously deposited Pt aerosol would simulate a catalyst coated diesel particle filter.) The catalytic activity was determined in all cases from temperature ramped oxidation in air of the filtered particles, and defined as the 50% conversion temperature.

It was found that Pt-doped soot and simultaneously filtered aerosols were both equally effective in reducing the oxidation temperature by up to 140–250 °C for the spark discharge soot (with 3–47 wt% Pt concentration in the soot cake), and by up to 140 °C for the pyrolysis soot (3 wt% Pt). Conversely, the deposition of a thin soot layer of 5–10 μm thickness onto Pt, or vice versa, produced only a slight temperature reduction on the order of about 13–42 °C. These results suggest that the distance between soot and Pt particles plays a key role in promoting an effective oxidation on the filter, which is consistent with the role of Pt particles as local generators of activated oxygen.  相似文献   


16.
13C-1H heteronuclear dipolar dephasing n.m.r. techniques allow discrimination between different chemical species contributing to the 13C n.m.r. spectra of complex hydrocarbons. Model compound studies show significantly different effective transverse relaxation constants for carboxyl and quaternary carbon atoms (≈200 μs), secondary and tertiary (≈20 μs), and primary carbon atoms (≈80 μs). Use of these effective relaxation data, together with appropriately timed windows in the continuous wave decoupling applied in standard cross-polarization-magic-angle spinning experiments on anthracite coal allow discrimination between aromatic tertiary and aromatic quaternary ring carbon atoms in this coal. Within the accuracy of experimental error, and of the structural modelling experiments herein reported, the use of the dipolar dephasing technique together with results of X-ray diffraction on coals allows a reasonable estimate to be made of the average number of condensed polynuclear rings in an ‘average molecule’ in the anthracite studied. Based on a model of pericondensed aromatic rings, this number lies between 33 and 45.  相似文献   

17.
Degradation of Rhodamine B (RhB) and COD by means of the coupled photocatalytic oxidation (PCO) and biofilm systems has been studied. The coupled PCO-biofilm systems were divided into two operation systems. The one (R1) consisted of a pre-PCO and a post-biofilm reactor system and the other (R2) was a pre-biofilm and a post-PCO reactor system. In a batch experiment, the order of initial decolorization rate was photocatalytic oxidation > adsorption > photolysis. The color removal rate of RhB was decreased with an increase of the initial COD concentration. In a continuous experimental study, almost all color was removed in the PCO reactor. During 180 days, the color and COD removal efficiencies in the R2 (pre-biofilm + post-PCO) system were higher than those in the R1 (pre-PCO + post-biofilm) system. In our experimental ranges, the PCO process was superior to Fenton oxidation in the color and COD removal.  相似文献   

18.
In this paper, single-crystalline SnO2 nanowires have been successfully prepared by a carbothermal reduction process employing SnO as the starting material and CuO as the catalyst. Their morphologies, purity and sizes of the products were characterized by transmission electron microscopy (TEM), selected area electron diffraction, X-ray diffraction, field emission scanning electron microscopy (FESEM) and Raman spectroscopy, respectively. The FESEM images reveal wire-like and rod-shaped nanowires of about 100–800 μm in length and 30–200 nm in the transverse dimensions. The three observed Raman peaks at 474, 634 and 774 cm−1 indicate the typical rutile phase of the SnO2 which is in agreement with the X-ray diffraction results. The influence of some reaction parameters, including the temperature and the reaction duration, on the forming, morphology and particle size of SnO2 crystallize is discussed.  相似文献   

19.
This paper shows the behavior of a Pt/Ba/γ–Al2O3 automotive catalyst in a fixed bed reactor during cyclic operation at lean and rich gas phase conditions at short (seconds) and long (hours) cycling times at different temperatures. Reactor exit gas phase concentrations have been measured and catalyst properties have been determined before and after selective cycling experiments. The experimental results indicate that: (i) Upon 9 h lean and 15 h rich cycling, the NO oxidation efficiency of the catalyst decreases with time while incomplete regeneration is seen, even after 15 h rich exposure with H2. The cyclic steady state is reached after 3 lean/rich cycles, at which only 60% of the available barium is involved in the NOx storage/reduction. (ii) The BET surface area, pore volume, and Pt dispersion decrease by approximately 40%, which may be a result of masking of Pt sites or blocking of pores of the barium clusters as BaCO3 becomes Ba(NO3)2. Experiments with catalyst pellet sizes of 180 and 280 μm along with XPS measurements show that blocking of catalyst pellet pores is not taking place. (iii) When applying lean/rich cycling in the order of seconds, it appears that catalyst history and lean/rich timing affect the number of cycles required to arrive at a closed N balance. XRD results after lean exposure confirm the formation of barium nitrate in the bulk of the barium cluster.  相似文献   

20.
The performance of the active catalyst 5%V2O5-1.9%MgO/TiO2 in propane oxidative dehydrogenation is investigated under various reactant contact modes: co-feed and redox decoupling using fixed bed and co-feed using fluid bed. Using fixed bed reactor under co-feed conditions, propane is activated easily on the catalyst surface with selectivities ranging from 30 to 75% depending on the degree of conversion. Under varying oxygen partial pressures, especially for higher than the stoichiometric ratio O2/C3H8 = 1/2, nor the propane conversion or the selectivities to propene and COx are affected. The performance of the catalyst in the absence of gas phase oxygen was tested at 400 °C. It was confirmed that the catalyst surface oxygen participates to the activation of propane forming propene and oxidation products with similar selectivities as those obtained under co-feed conditions. The ability of the catalyst to fully restore its activity by oxygen treatment was checked in repetitive reduction–oxidation cycles. Fluid bed reactor using premixed propane–oxygen mixtures was also employed in the study. The catalyst was proved to be very active in the temperature range 300–450 °C attaining selectivities comparable to those of fixed bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号