共查询到19条相似文献,搜索用时 62 毫秒
1.
将Nd_(8.5)Fe_(77)Co_5Zr_3B_(6.5)(at%)合金熔化至不同温度后,以18 m/s的甩带速度快淬,对淬态条带进行了退火处理,分析了其微观结构和磁性能的变化。结果表明,熔体温度对淬态及其退火态合金的微观结构和磁性能可以产生重要影响,熔体温度为1210℃时制备的快淬条带由Nd_2Fe_(14)B相和部分非晶相组成,具有一定的硬磁性;随着快淬时熔体温度的升高,淬态条带中非晶相的质量分数逐渐增加,其磁性逐渐转变为软磁性。几种合金经退火处理后均由大量Nd_2Fe_(14)B相与少量软磁相组成,熔体温度较低的合金退火后其晶粒尺寸较小,磁性能较好。熔体温度为1210℃时制备的合金退火后磁性能最佳,内禀矫顽力Hci为559.2 kA/m,剩余磁化强度Br为0.98 T,最大磁能积(BH)_(max)为127.8 kJ/m~3。 相似文献
2.
以Nd9.5Fe76Zr3Co5B6.5合金为研究对象,研究了不同快淬速度(8~65 m/s)对合金的磁性能、交换耦合作用和微观结构的影响。结果表明,快淬速度对合金退火后的微观结构和磁性能具有显著地影响,适当的快淬速度将使合金退火后的晶粒细化、分布均匀,提高软、硬磁性相间的交换耦合作用,进而提高合金的磁性能。当淬速为15 m/s时,合金退火后具有最佳的综合磁性能:Br=0.976 T,Hcj=711.57 kA/m,(BH)max=150.61 kJ/m3。 相似文献
3.
4.
研究了含Nd6~9at%和Fe>85at%的低钕高铁合金的快淬和晶化热处理,以及对其磁性能的影响。 相似文献
5.
采用熔体快淬法及真空退火工艺制备了不同淬速的Nd8.5Fe77.7Nb2Co5Ga0.6B6.2粘结磁体,研究了不同淬速下磁体的磁性能及温度系数。结果表明,适当的快淬速度有利于合金退火后的晶粒细化,有效地改善了退火后软、硬磁相间的交换耦合作用。快淬速度对磁体的温度系数有显著的影响,矫顽力温度系数β随着淬速的增加而逐渐降低;随着淬速的增加,剩磁温度系数α先降低后升高,这可能与合金中软、硬磁相间的交换耦合作用的变化有密切的关系。 相似文献
6.
7.
研究了Nd8.5Fe77.6B6.4Co4Zr3Cu0.5合金晶化处理后的微观结构.研究发现,该合金15 m/s淬态薄带只存在一个较宽的晶化峰,其晶化后的晶粒尺寸均匀性较差,晶化相中存在少量Fe77.2Nd22.8相,削弱了晶粒间的交换耦合作用.三维原子探针分析表明,Cu几乎不固溶于α-Fe,和Zr元素共同富集于Fe77.2Nd22.8相区.这些相的存在,使得合金的剩余磁化强度和磁滞回线的方形度降低,进而降低了合金的综合磁性能. 相似文献
8.
9.
合金成分对Pr2Fe14B/α-Fe纳米复合永磁材料组织与磁性的影响 总被引:2,自引:0,他引:2
用XRD、TEM、Mossbauer谱和VSM等实验方法,研究了不同Pr含量、B含量和Cu含量的Pr2Fe14B/α Fe型纳米复合快淬带的显微结构与磁性。结果表明:PrxFe94-xB6合金在x=8(α Fe体积分数约30%)时磁性能最佳,Br=1.29T,Hci=461.7kA/m,(BH)max=165.6kJ/m3;Pr8.5(Fe0.8Co0.2)86.5-xCuxB5合金在x=0.5时获得最佳的磁性能;随B含量增加,富B相在晶界分布,Pr8Fe92-xBx交换耦合减弱,磁性能单调下降。 相似文献
10.
采用快淬后真空晶化处理的方法制备出纳米晶复合合金Nd9.5Fe76-xCo5Zr3CuxB6.5(x=0~2),系统地研究了Cu元素对其磁性能的影响。结果表明:适量Cu元素的添加,可以提高磁体的剩磁Br、内禀矫顽力jHc和最大磁能积(BH)max,并且可以有效地提高磁体的剩磁温度系数α,但使磁体的矫顽力温度系数β略有降低。当Cu含量为0.25 at%时,该磁体具有最佳的综合磁性能:(BH)max=79 kJ/m3,jHc=685 kA/m,Br(T)=0.713 T;剩磁温度系数α20~150℃=0.071%/℃;矫顽力温度系数β20~150℃=0.36%/℃。 相似文献
11.
研究了添加Zr元素对快淬(Nd,Pr)10.5Fe81.5-xZrxCo2B6(x=0,0.5,1.0,1.5,2.0,2.5)合金显微组织结构和磁性能的影响,用AFM观察了合金条带自由表面的显微结构.结果表明添加Zr元素能显著细化合金的晶粒,从(Nd,Pr)10 5Fe81 5Co2B6合金的~150 nm减小到(Nd,Pr)10.5Fe80Zr1.5Co2B6合金的~50 nm;1%是Zr最佳添加量,低于1%晶粒不够细化,合金的各项磁性能指标均很低,超过1%,富集在晶界处的富Zr晶间相加厚,晶粒间的交换作用和剩磁增强效应减弱,磁体的剩磁Br和最大磁能积(BH)m降低.(Nd,Pr)10.5Fe80.5Zr1Co2B6粘结磁体磁性能最佳Br=0.675 T,Hci=616 kA·m-1,(BH)m=77 kJ·m-3. 相似文献
12.
采用液相还原法,通过控制颗粒不同晶面的生长速率,制备了不同尺寸、不同Fe含量的片状FexCo1-x(x=0.1~0.6)合金纳米颗粒,研究了不同成分铁钴合金纳米颗粒的微结构及形状对其磁性的影响。结果表明,当x=0.1时,铁钴合金纳米片为面心立方和密堆六方两相共存结构;当x≥0.2时,铁钴合金纳米片为单相体心立方结构。同块体合金相比,铁钴合金纳米片的点阵发生膨胀。纳米片的饱和磁化强度低于合金相应的块体值,纳米片的矫顽力高于块体及球形纳米颗粒的矫顽力,并且随铁含量的提高而降低。颗粒的片状形貌使得一致取向Fe0.6Co0.4合金纳米片的磁化行为随外场方向而改变,磁化的易轴在面内方向,难轴为纳米片的法线方向。 相似文献
13.
采用磁控溅射法在硅基片上制备了Co原子分数为13.0%的Co-C纳米复合薄膜.在真空条件下,对薄膜进行退火处理,退火温度从473K逐步提高至773K,保温时间30min.形貌观察表明,未经退火处理的薄膜中,Co颗粒均匀分布在非晶C基体中,Co颗粒尺寸为1.5-3.0nm;673K退火后,Co颗粒尺寸增大.磁性能测试表明,未经退火处理的薄膜磁性较弱,随着退火温度升高,薄膜的磁化强度和矫顽力均明显增大;当退火温度增加至673—773K时,薄膜呈现出低温铁磁性、室温超顺磁性的典型颗粒体系磁性特征.磁输运特性研究表明,未经退火处理的薄膜在温度为4.2K,磁场为3980kA/m时表现出1.33%的负磁电阻,随着退火温度升高,样品磁电阻值下降;电阻与温度关系在4.2—60K范围内符合lnR-T~(-1/4)线性关系,磁输运遵循变程跳跃(variable range hopping)传导机制. 相似文献
14.
基于改进元胞自动机(CA)模型,综合考虑铸造、固溶处理和时效处理过程中的微观组织转变,建立了镁合金铸件微观组织演化模型;在分析Mg-Al系镁合金第二相析出过程和强化机理的基础上,建立了镁合金铸件力学性能模型;针对镁合金汽车轮毂,采用建立的模型,模拟预测了铸件关键部位的微观组织演化和力学性能.结果表明,铸态和固溶处理条件下屈服强度的预测值与实际测量平均值吻合较好,而时效处理状态下的预测值与实测平均值有一定差别,抗拉强度的模拟预测值与实际测量的平均值吻合较好 相似文献
15.
电沉积Fe、Ni基合金箔的组织形貌及磁性能 总被引:11,自引:0,他引:11
采用电沉积方法,制备了铁箔、铁基合金(Fe-Ni,Fe-Co,Fe-Ni-Co)箔、镍箔、镍基合金(Ni-Fe)箔,利用扫描电镜观察了金属箔的组织形貌,直流开路磁场下测定了电沉积金属箔的基本磁性能.实验表明:电沉积铁基合金箔晶粒小于10 μm,电沉积镍基合金箔晶粒大小在2 μm左右; 电沉积Fe-Ni合金箔是一种性能良好的软磁材料,其基本磁性能优于传统熔铸-轧制坡莫合金1J79. 相似文献
16.
采用单辊急冷法制备了(Fe0.58Co0.42)73Cr17Zr10非晶薄带,并对该合金进行等温退火。用XRD、AFM、VSM研究退火温度对(Fe0.58Co0.42)73Cr17Zr10非晶合金的组织结构和磁性能的影响。结果表明:该合金晶化析出过程为:Am→α-Fe(Co)+Am'→α-Fe(Co)+Cr Fe4+Fe3Ni2+Cr2Zr+未知相。500℃和610℃退火后薄带表面的AFM观察表明:AFM图片所呈现的颗粒尺寸要比用Scherrer法测得的α-Fe(Co)纳米晶尺寸大得多,这是典型的包裹晶粒现象。在低于晶化峰值温度(Tp)退火,由于铁磁性α-Fe(Co)相的析出,合金的饱和磁化强度Ms随退火温度的升高大幅上升;当退火温度高于Tp时,由于α-Fe(Co)相的粗化和析出相的析出和长大,Ms急剧下降,在635℃退火能获得最好磁性能,其Ms=126.2 emu/g。 相似文献
17.
采用真空电弧熔炼法制备了不同Zr含量的FeCoCrNiZrx(x=0.5,0.75,1)高熵合金。研究了Zr含量对合金组织、磁性能和电化学腐蚀性能的影响。采用X射线衍射仪、扫描电镜、振动样品磁力计和电化学工作站对合金的磁性能和电化学腐蚀能力进行了研究。结果表明:FeCoCrNiZrx合金具有典型的共晶组织,由面心立方固溶体和C15 Laves相组成。随着Zr含量的增加,合金硬度呈先增大后减小的趋势。根据合成的静态滞回曲线可以看出,FeCoCrNiZr0.5合金具有顺磁性和铁磁性的混合型特征,FeCoCrNiZr0.75合金表现为顺磁性,FeCoCrNiZr1合金表现为典型的铁磁性。同时,FeCoCrNiZrx合金在3.5%(质量分数)NaCl溶液中经历活化与钝化转变。当合金中的Zr含量为0.75%(原子分数)时,合金极化电阻具有最大的阻抗电容半径,钝化膜的耐腐蚀能力最强。 相似文献
18.
添加Zr元素对纳米复相Nd10.5Fe78.4-xCo5ZrxB6.1粘结永磁体结构和磁性能的影响 总被引:1,自引:0,他引:1
采用快淬、热处理及模压成形工艺,制备了成分为Nd10.5Fe78.4-xCo5ZrxB6.1(x=0,1.0,1.5,2.0,2.5)的5种粘结永磁体。采用XRD,DTA,TEM等方法对合金的组织结构和晶化行为进行了研究。结果表明:Zr含量的增加可提高材料的非晶形成能力;当Zr添加到一定量时,形成高熔点的Fe2Zr相,产生细化晶粒的作用;添加Zr元素显著地提高了合金的矫顽力,改善了退磁曲线矩形度,从而提高了最大磁能积。Nd10.5Fe78.4-xCo5ZrxB6.1永磁体在x=2时获得最佳磁性能,Br=0.659T,Hcj=628kA/m,Hcb=419kA/m,(BH)m=73kJ/m^3。 相似文献