首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Wotske  Y Wu  DA Wolters 《Analytical chemistry》2012,84(15):6848-6855
Farnesylation involves the post-translational attachment of a 15 carbon unit to the C-terminus of proteins, thus allowing them to incorporate into membranes. The farnesylation reaction requires farnesyldiphosphate as the farnesyl group donor and is catalyzed by the farnesyltransferase. Some of the most familiar farnesylated proteins belong to the Ras protein superfamily, well-known oncoproteins. As Ras proteins require the membrane localization for the transduction of extracellular signals, farnesyltransferase inhibitors are discussed as chemotherapeutic agents. Despite the importance of this post-translational modification, farnesylated peptides have been investigated rarely by means of high-pressure liquid chromatography in combination with mass spectrometry. In this study, we examined the liquid chromatographic separation of farnesylated peptides with the help of the multidimensional protein identification technology. The peptides were further ionized by electrospray ionization and subsequently analyzed by tandem mass spectrometry. We demonstrated that farnesylated peptides are more strongly retained by reversed phase than nonfarnesylated peptides. This allowed for the identification of farnesylated peptides, if spiked into complex peptide samples. In some cases the farnesyl group was apparently split off from the peptide during the ionization process, and tandem mass spectra often revealed a neutral loss of the farnesyl moiety.  相似文献   

2.
An approach to genetic identification using biallelic single-nucleotide polymorphism (SNP) genetic markers is described in which the three possible genotypes, AA, Aa, or aa, where "A" and "a" represent the two SNP alleles, are assigned a ternary (base 3) digit of 0, 1, or 2, respectively. Genotyping an individual over a panel of separate SNP markers produces a composite ternary genetic code that can be converted to an easily stored, decimal (base 10) genetic identification number. The unambiguous identification of 11 individuals is demonstrated using ternary genetic codes generated from MALDI-TOF mass spectrometric genotyping data from 7 different SNP markers.  相似文献   

3.
4.
The stoichiometry of protein phosphorylation significantly impacts protein function. The development of quantitative techniques in mass spectrometry has generated the ability to systematically monitor the regulation levels of various proteins. This study reports an integrated methodology using cerium oxide nanoparticles and isobaric tandem mass tag (TMT) labeling to assess absolute stoichiometries of protein phosphorylation. This protocol was designed to directly measure the dephosphorylation levels for a known phosphorylation site, therefore allowing for quantification of phosphosites. Both the accuracy and precision of the method were verified using standard peptides and protein tryptic digests. This novel method was then applied to quantify phosphorylations on eukaryotic initiation factor 3H (eIF3H), a protein integral to overall eukaryotic protein translation initiation. To date, this is the first report of assessment of protein phosphorylation quantification on eIF3.  相似文献   

5.
Radioligands, which specifically bind to a receptor or enzyme (target), enable molecular imaging of the target expression by positron emission tomography (PET). One very promising PET tracer is (S)-1-(4-(2-[(18)F]-fluoroethoxy)benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin (isatin), a caspase-3 inhibitor, which has been developed at the University Hospital of Mu?nster to image cell death (apoptosis). The translation of this novel tracer from preclinical evaluation to clinical examinations requires biodistribution studies, which characterize the pharmakodynamics and metabolic fate of the compound. This information is used to further optimize the radioligands and to interpret radioactive signals from tissues upon injection of the radioligand in vivo with respect to their specificity. The analysis of the metabolism of radioligands is hampered by the low amount of the compound being typically injected (nano/picomolar amount per injection). In the present study, electrochemistry (EC) is applied to elucidate the oxidative metabolism pathway of the radiotracer. Previous studies have demonstrated that EC can be utilized as a complementary tool to conventional in vitro approaches in drug metabolism studies. Thereby, potential oxidative metabolites of the isatin are determined by EC coupled to electrospray ionization mass spectrometry (EC/ESI-MS). Moreover, using EC/liquid chromatography (LC) and ESI-ion trap MS(n), structural elucidation of the oxidation products is performed. Comparatively to EC, in vitro metabolism studies with rat liver microsomes are conducted. Finally, the developed LC/ESI-MS method is applied to determine metabolites in body fluids and cell extracts from in vivo studies with the nonradioactive ((19)F) and radioactive isatin ((18)F). On the basis of the electrochemically generated oxidation products of the radioligand, the major radioactive metabolite occurring in vivo was successfully identified.  相似文献   

6.
Protein tyrosine nitration (PTN) is a post-translational modification that is related to several acute or chronic diseases. PTN introduces a nitro group in the ortho position of the phenolic hydroxyl group of tyrosine residues. PTN has been shown to be involved in the pathogenesis of inflammatory responses, cancers, and neurodegenerative and age-related disorders. Furthermore, it has been proposed that PTN regulates signal cascades related to nitric oxide (NO·) production and NO-mediated processes. Although nitrated proteins as markers of oxidative stress are confirmed by immunological assays in various affected cells or tissues, it is not known how many different types of proteins in living cells are nitrated. Since protein nitration is a low-abundance post-translational modification, development of an effective enrichment method for nitrated proteins is needed to detect nitrated peptides or proteins from the limited amount of pathophysiological samples. In the present study, we developed an enrichment method using specific chemical tagging. Nitroproteome profiling using chemical tagging and mass spectrometry was validated by model proteins. Furthermore, we successfully identified numerous nitrated proteins from the Huh7 human hepatoma cell line.  相似文献   

7.
An ultralow volume fraction collection system referred to as nano fraction analysis chip technology (nanoFACT) is reported. The system collects 25-2500-nL fractions from 75-microm nanoLC columns into pipet tips at a user-defined, timed interval, typically one fraction every 15-120 s. Following collection, the fractions in the tip dry down naturally on their own in such a way as to create a concentrated band at the very end of the interior of the pipet tip. The fractions are then reconstituted directly in the pipet tips in approximately 250 nL of solvent prior to analysis. Because the chromatography and reconstitution solvent are independent, the reconstitution solvent can be selected to maximize ionization efficiency without compromising chromatography. In the infusion analysis of the nanoLC fractions, a low-flow electrospray chip is used which consists of 400 nozzles, each with an inner diameter of 2.5 microm and yielding flow rates of approximately 20 nL/min. Therefore, when reconstituted in 250 nL, each nanoLC fraction can be analyzed for over 10 min. This increase in analysis time allows for signal averaging, resulting in higher data quality, collision energy optimization, slower scanning techniques to be used, such as neutral loss and precursor ion scanning, higher resolution scans on FTMS instruments, and improved peptide quantitation. Furthermore, the nanoLC fractions could be archived in the pipet tips for analysis at a later date. Here, the advantages of nanoFACT are shown for phosphorylation analysis using bovine fetuin and glycosylation analysis using bovine ribonuclease B (RNase B). In the phosphorylation analysis, a comparison between conventional nanoLC and a nanoFACT analysis was performed. An MS/MS spectrum of a triply phosphorylated peptide, 313-HTFSGVApSVEpSpSSGEAFHVGK-333 could only be obtained using nanoFACT, not with nanoLC. Furthermore, spectral quality for the nanoFACT analysis was significantly improved over nanoLC. This was determined by comparing the number of diagnostic ions between the nanoFACT and nanoLC spectra, and it was found that the nanoFACT spectra contained a 19% or greater number of diagnostic ions for nonphosphorylated peptides and 55% or greater for phosphorylated peptides. For the glycosylation analysis, the glycosylation site of RNase B was fully characterized using 100 fmol of tryptic digest on a three-dimensional ion trap mass spectrometer.  相似文献   

8.
Wang Z  Dunlop K  Long SR  Li L 《Analytical chemistry》2002,74(13):3174-3182
The availability of a suitable database is critical in a proteomic approach for bacterial identification by mass spectrometry (MS). The major limitation of the present public proteome database is the lack of extensive low-mass bacterial protein entries with masses experimentally verified for most bacteria. Here, we present a method based on mass spectrometry to create protein mass tables specifically tailored for bacterial identification. Several issues related to the detection of bacterial proteins for the purpose of database creation are addressed. Three species of bacteria, namely, Escherichia coli, Bacillus megaterium, and Citrobacter freundii, which can be found in the ambient environment, were chosen for this study. Direct matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis of each bacterial extract reveals 20-29 protein components in the mass range from 2000 to 20,000 Da. HPLC fractionation of bacterial extracts followed by off-line MALDI-TOF analysis of individual fractions detects 156-423 components. Analysis of the extracts by HPLC/electrospray ionization MS shows the number of detectable proteins in the range of 46-59. Although a number of components were common to the three detection schemes employed, some unique components were found using each of these techniques. In addition, for E. coli where a large proteome database exists in the public domain, a number of masses detected by the mass spectrometric methods do not match with the proteome database. Compared to the public proteome database, the mass tables generated in this work are demonstrated to be more useful for bacterial identification in an application where the bacteria of interest have limited protein entries in the public database. The implication of this work for future development of a comprehensive mass database is discussed.  相似文献   

9.
A method for mass spectrometric peptide mapping was developed, based on hydrolysis of a solid protein by acid vapor followed by mass spectrometric analysis of the cleavage products. The method is applicable to lyophilized samples as well as proteins present in gels after separation by SDS-PAGE. The cleavage specificity was established using a number of standard proteins. Three different types of cleavages were observed: specific internal backbone cleavages at Asp, Ser, Thr, and Gly and N- and C-terminal sequence ladders. On the basis of the observed cleavage characteristics, a strategy for protein identification based on the peptide mass maps was developed. The identification strategy utilizes the specific internal backbone cleavages as well as the partial sequence information, obtained from the sequence ladders.  相似文献   

10.
A method for testing the significance of mass spectrometric (MS) protein identification results is presented. MS proteolytic peptide mapping and genome database searching provide a rapid, sensitive, and potentially accurate means for identifying proteins. Database search algorithms detect the matching between proteolytic peptide masses from an MS peptide map and theoretical proteolytic peptide masses of the proteins in a genome database. The number of masses that matches is used to compute a score, S, for each protein, and the protein that yields the best score is assumed as the identification result. There is a risk of obtaining a false result, because masses determined by MS are not unique; i.e., each mass in a peptide map can match randomly one or several proteins in a genome database. A false result is obtained when the score, S, due to random matching cannot be discerned from the score due to matching with a real protein in the sample. We therefore introduce the frequency function, f(S), for false (random) identification results as a basis for testing at what significance level, alpha, one can reject a null hypothesis, H0: "the result is false". The significance is tested by comparing an experimental score, S(E), with a critical score, S(C), required for a significant result at the level alpha. If S(E) > or = S(C), H0 is rejected. f(S) and S(C) were obtained by simulations utilizing random tryptic peptide maps generated from a genome database. The critical score, S(C), was studied as a function of the number of masses in the peptide map, the mass accuracy, the degree of incomplete enzymatic cleavage, the protein mass range, and the size of the genome. With S(C) known for a variety of experimental constraints, significance testing can be fully automated and integrated with database searching software used for protein identification.  相似文献   

11.
Lu B  Ruse C  Xu T  Park SK  Yates J 《Analytical chemistry》2007,79(4):1301-1310
We developed and compared two approaches for automated validation of phosphopeptide tandem mass spectra identified using database searching algorithms. Phosphopeptide identifications were obtained through SEQUEST searches of a protein database appended with its decoy (reversed sequences). Statistical evaluation and iterative searches were employed to create a high-quality data set of phosphopeptides. Automation of postsearch validation was approached by two different strategies. By using statistical multiple testing, we calculate a p value for each tentative peptide phosphorylation. In a second method, we use a support vector machine (SVM; a machine learning algorithm) binary classifier to predict whether a tentative peptide phosphorylation is true. We show good agreement (85%) between postsearch validation of phosphopeptide/spectrum matches by multiple testing and that from support vector machines. Automatic methods conform very well with manual expert validation in a blinded test. Additionally, the algorithms were tested on the identification of synthetic phosphopeptides. We show that phosphate neutral losses in tandem mass spectra can be used to assess the correctness of phosphopeptide/spectrum matches. An SVM classifier with a radial basis function provided classification accuracy from 95.7% to 96.8% of the positive data set, depending on search algorithm used. Establishing the efficacy of an identification is a necessary step for further postsearch interrogation of the spectra for complete localization of phosphorylation sites. Our current implementation performs validation of phosphoserine/phosphothreonine-containing peptides having one or two phosphorylation sites from data gathered on an ion trap mass spectrometer. The SVM-based algorithm has been implemented in the software package DeBunker. We illustrate the application of the SVM-based software DeBunker on a large phosphorylation data set.  相似文献   

12.
Protonated oxygen-containing monofunctional compounds react with selected methoxyborane reagents by proton transfer followed by nucleophilic substitution of methanol at the boron atom in a Fourier transform ion cyclotron resonance mass spectrometer. The derivatized oxygen functionality can be identified by H/D exchange, collision-activated dissociation, or both. This information on the identity of the functionalities in the analyte, in conjunction with molecular formula information obtained from exact mass measurements on either the protonated or derivatized analyte, facilitates structure elucidation of unknown organic compounds in a mass spectrometer.  相似文献   

13.
Reversible protein phosphorylation regulates many cellular processes. Understanding how phosphorylation controls a given pathway usually involves specific knowledge of which amino acid residues are phosphorylated on a given protein. This is often a nontrivial task. In addition to the difficulties involved in purifying sufficient amounts of any given protein, most phosphoproteins contain multiple, substoichiometric sites of phosphorylation. In this paper, we describe substantial improvements made to our previously reported multidimensional electrospray MS-based phosphopeptide mapping technique that have resulted in a 20-fold increase in sensitivity for the overall process. Chief among these improvements are the incorporation of capillary chromatography and a microionspray source for the mass spectrometer into the first dimension of the analysis. In the first dimension of the process, phosphopeptides present in the proteolytic digest of a protein are selectively detected and collected into fractions during on-line LC/ESMS, which monitors for phosphopeptide specific marker ions. The phosphopeptide containing fractions are then analyzed in the second dimension by either MALDI-PSD or nano-ES with precursor ion scanning. The relative merits and limitations of these two techniques for phosphopeptide detection are demonstrated. The enhancement in sensitivity of the method under the new experimental conditions makes it suitable for phosphorylation mapping (from selective detection through sequencing) on gel-separated phosphoproteins where the level of phosphorylation at any given site is <200 fmol. Furthermore, this method detects serine, threonine, and tyrosine phosphorylation equally well. We have successfully employed this new configuration to map 11 in vivo sites of phosphorylation on the Saccharomyces cerevisiae protein kinase YAK1. YAK1 peptides containing all five YAK1 PKA consensus sites are phosphorylated, suggesting that YAK1 is an in vivo substrate for PKA. In addition, four peptides containing cdk sites and the autophosphorylation site at Tyr530 were found to be phosphorylated. Because the first dimension of this method generates a phosphorylation profile that can be used for a semiquantitative evaluation of site specific phosphoxylation, we evaluated its ability to detect site-specific changes in the phosphorylation profile of a protein in response to altered cellular conditions. This comparative phosphopeptide mapping strategy allowed us to detect a change in phosphorylation stoichiometry on the motor protein myosin-V in response to treatment with either mitotic or interphase Xenopus egg extracts and to identify the single functionally significant phosphorylation site that regulates myosin-V cargo binding.  相似文献   

14.
Zhang W  Chait BT 《Analytical chemistry》2000,72(11):2482-2489
We describe the protein search engine "ProFound", which employs a Bayesian algorithm to identify proteins from protein databases using mass spectrometric peptide mapping data. The algorithm ranks protein candidates by taking into account individual properties of each protein in the database as well as other information relevant to the peptide mapping experiment. The program consistently identifies the correct protein(s) even when the data quality is relatively low or when the sample consists of a simple mixture of proteins. Illustrative examples of protein identifications are provided.  相似文献   

15.
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was used to image the distribution of cocaine and its metabolites in intact single hair samples from chronic users down to a concentration of 5 ng/mg. Acquisitions were performed in rastering mode, at a speed of 1 mm/s and in the selected reaction monitoring (SRM) mode on a MALDI triple quadrupole linear ion trap fitted with a high repetition rate laser (1 kHz). Compared to traditional methods based on LC-MS/MS or GC-MS(/MS) which require to segment the hair to obtain spatial resolution, MALDI-MSI, with a straightforward sample preparation beforehand, allowed obtaining a spatial resolution of 1 mm and thus the chronological information about cocaine consumption contained in a single intact hair over several months could be monitored. The analysis time of an intact single hair sample of 6 cm is approximately of 6 min. Cocaine and its metabolites benzoylecgonine, ethylcocaine, and norcocaine were investigated in nine sets of hair samples for forensic purposes. The analyses were accomplished by spraying α-cyano-4-hydroxycinnamic acid (CHCA), 4-chloro-α-cyano-cinnamic acid (Cl-CCA), or (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) as MALDI matrices. We also propose a rapid strategy for sensitive confirmatory analyses with both MS/MS and MS(3) experiments performed directly on intact hair samples. Since only part of the hair strand is analyzed, additional analyses are possible at any time on the remaining hair from the strand.  相似文献   

16.
We have developed a multi-protease approach that allows sensitive and comprehensive mapping of protein phosphorylation sites. The combined application of the low-specificity proteases elastase, proteinase K, and thermolysin in addition to trypsin results in high sequence coverage, a prerequisite for comprehensive phosphorylation site mapping. Phosphopeptide enrichment is performed with the recently introduced phosphopeptide affinity material titansphere. We have optimized the selectivity of the phosphopeptide enrichment with titansphere, without compromising the high recovery rate of approximately 90%. Phosphopeptide-enriched fractions are analyzed with a highly sensitive nanoLC-MS/MS system using a 25-microm-i.d. reversed-phase column, operated at a flow rate of 25 nL/min. The new approach was applied to the murine circadian protein period 2 (mPER2). A total of 21 phosphorylation sites of mPER2 have been detected by the multi-protease approach, whereas only 6 phosphorylation sites were identified using solely trypsin. Titansphere proved to be well suited for the enrichment of a large variety of phosphopeptides, including peptides carrying two, three, or four phosphorylated residues, as well as phosphopeptides containing more basic than acidic amino acids.  相似文献   

17.
The validity of using elemental phosphorus standards to accurately and precisely quantify phosphopeptides by capillary HPLC (capHPLC) coupled to ICP-collison cell-MS is investigated in detail. Operating requirements to maintain stable (31)P sensitivity along the reversed-phase gradient are described. Specifically, the use of an optimum postcolumn makeup flow with a defined acetonitrile content turned out to be necessary to buffer the acetonitrile variation of the capillary chromatographic eluent and ensure plasma stability. Then, a highly pure P-containing standard (bis(4-nitro-phenyl) phosphate, BNPP) was spiked into the samples and used to quantify them with very low absolute errors (2-4%) and excellent precision (3-6%). The capHPLC-ICPMS method showed excellent linearity over 3 orders of magnitude and provided adequate detection limits (110 fmol, 3.4 pg P). Accurate quantification of the phosphopeptides present in a tryptic digest of beta-casein and casein from bovine milk was then attempted. Previously, and in order to be able to close mass balances, total P contents, percentages of inorganic P present, and recoveries from the reversed-phase column used in the separation were computed for each sample. Quantification using the spiked BNPP for the different phosphopeptides detected matched the expected values well validating the quantitative methodology proposed. The capHPLC-ESIMS analysis allowed elucidating amino acid sequences, a requisite still necessary to translate the determined amount of P in each chromatographic peak into amount of phosphopeptide. The great potential of these strategies, based on ICPMS detection, to assess the many procedures proposed and commonly used for purification, preconcentration, and/or isolation of phosphopeptides in phosphoproteomics studies is demonstrated using a commercially available titanium dioxide (TiO(2)) cartridge for phosphopeptide enrichment from complex mixtures. Quantitative results obtained allow one to assess individual phosphopeptide recoveries from the TiO(2) cartridge with unsurpassed accuracy. Of course, this information is essential for reliable absolute quantifications in phosphoproteomics.  相似文献   

18.
Rapid and reliable detection, identification, and typing of bacterial species are necessary in response to natural or terrorist-caused outbreaks of infectious diseases and play crucial roles in diagnosis and efficient treatment. We report here two proteomic approaches with a high potential in the detection and identification of Coxiella burnetii, the causative agent of Q fever. The first of them starts with the acetonitrile (ACN) and trichloroacetic acid extractions of inactivated C. burnetii cells followed by the detection of extracted molecules and ions derived from the inactivated cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In the second approach, identification of the proteins extracted by ACN is accomplished after enzymatic digestion by electrospray tandem mass spectrometry coupled to a nanoscale ultraperformance liquid chromatography (LC-MS/MS). In order to observe morphological differences on the surface structures upon extraction, the inactivated and treated cells of the bacterium were examined by electron microscopy. The LC-MS/MS approach has allowed identification of 20 proteins in the ACN extracts of C. burnetii strain RSA 493 that were observed in more than 3 out of 10 experiments.  相似文献   

19.
While matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has revolutionized the manner by which many large molecules are characterized, the highly variable appearance of MALDI mass spectra remains a concern. We have developed MALDI-based imaging as a diagnostic tool for examining the relationships between preparation strategy, sample morphology, and spectral quality. The imaging protocol involves the automated acquisition of mass spectra at 400-1600 positions within a single sample, followed by off-line processing and image display. Several sample types have been characterized, including a simple peptide mixture prepared in dried droplets of 2,5-dihydroxybenzoic acid and in thin films of alpha-cyano-4-hydroxycinnamic acid as well as a complex biological sample consisting of intact peptidergic neurons from the marine mollusk Aplysia californica. Imaging experiments provide a wealth of unbiased information concerning sample defects, spectral reproducibility, mass accuracy, differential analyte distributions, and the validity of internal standards.  相似文献   

20.
Carboxylated/oxidized diamond nanoparticles (nominal size 100 nm) exhibit exceptionally high affinity for proteins through both hydrophilic and hydrophobic forces. The affinity is so high that proteins in dilute solution can be easily captured by diamonds, simply separated by centrifugation, and directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). No preseparation of the adsorbed molecules from diamonds is required for the mass spectrometric analysis. Compared to conventional MALDI-TOF-MS, an enhancement in detection sensitivity by more than 2 orders of magnitude is achieved for dilute solution containing cytochrome c, myoglobin, and albumin because of preconcentration of the probed molecules. The lowest concentration detectable is 100 pM for a 1-mL solution. Aside from the enhanced sensitivity, the overall performance of this technique does not show any sign of deterioration for highly contaminated protein solutions, and furthermore, no significant peak broadening and band shift were observed in the mass spectra. The promise of this new method for clinical proteomics research is demonstrated with an application to human blood serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号