首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
在实现滚动轴承故障诊断的过程中,需要通过时频分析方法对原始信号进行特征集构建,期间包含大量计算且对于人工经验有着很强依赖性.针对滚动轴承故障诊断中依赖特征集选取这一问题,提出了基于深度残差网络的故障诊断方法,凭借深度学习的自主学习及强泛化能力以实现故障特征的自我获取和训练,消除故障诊断中人为特征集选取环节,从而简化故障诊断的流程.主要内容包括:首先,构建残差网络模型,通过建立多组卷积层、池化层及残差块,共同组成深层次网络模型;其次,通过滚动轴承故障实验台获取不同类型的故障样本,对信号进行分组并构建训练样本和测试样本;进而,对网络进行初始化设定后,将训练集输入深度残差网络模型,利用多层卷积和池化运算实现对原始信号抽象化表征;最后,在网络模型末端集成Softmax分类器,实现对两类轴承故障样本的分类诊断.所提出方法在两组诊断实验中均达到了 100%的准确率,对于不同类型、转速和损伤程度的滚动轴承故障都具有很好效果.研究说明所建立模型能够自主地挖掘故障信号的特征集,可在一定程度上简化故障诊断研究中的预处理和特征计算环节,避免人工提取特征的主观盲目性和经验依赖性,具有广泛的工程应用前景.  相似文献   

2.
彭涛  伦功仁  赵峰 《风机技术》2022,(S1):37-42
船用补水泵是常规的船用设备,与陆上普通补水泵不同的是船用补水泵有着较高的可靠性要求,并且要求故障发生时要及时发现故障位置。为了能够提升对于补水泵的健康监测以及智能故障诊断,这篇文章提出了一种基于深度残差收缩网络的补水泵滚动轴承故障诊断模型。该模型使用的深度残差收缩网络是对于残差网络的改进,首先增加了网络深度,强化了特征提取能力,残差模块的显著特点是具有恒等映射结构,该结构能有效解决深度神经网络中的梯度消失或爆炸问题。通过软阈值和注意力机制的深度融合从而实现样本降噪功能。最后,为了验证方法的有效性,采用大量的补水泵滚动轴承振动信号进行测试,通过与其他主流网络模型的故障分类准确率对比,得出结论深度残差收缩网络对于滚动轴承的故障具有较高的分类精度。  相似文献   

3.
《机电工程》2021,38(10)
采用传统的滚动轴承故障诊断方法对时域信号进行特征提取时,过分依赖于专家知识,而且提取到的特征对故障信息表达不充分,针对这一问题,提出了一种基于残差网络和胶囊网络的滚动轴承智能故障诊断方法。首先,以原始振动信号作为输入,使用一维卷积神经网络对其时域信号进行了全局特征提取;然后,利用残差网络提取了数据的低层特征,并将其输入到胶囊网络中,进行了低层特征矢量化处理;随后,采用模糊聚类改进的动态路由方法完成了低层特征到高层特征的聚合,并进行了特征分类;最后,为了验证该方法的有效性,采用滚动轴承数据集对所提出的方法进行了试验验证,并将该方法诊断结果与其他深度学习方法诊断结果进行了比较。研究结果表明:残差胶囊网络在分类精度上达到了99.95%,并且在收敛速度方面得到了提高,通过t-sne可视化分析进一步证明了该网络模型具有自适应挖掘高层特征的能力;残差胶囊网络在滚动轴承故障诊断中具有良好的精确性和泛化性。  相似文献   

4.
为了进一步提高对机床不同故障的分类准确率,设计了一种深度残差网络。通过对机床振动试验台信号预处理优化网络结果,并进行故障诊断对比分析。研究结果表明:当行数比列数更少时,随着两者差异增加,模型分类准确率显著降低;当行数超过列数后,模型达到了更高的分类准确率并保持相对稳定的状态。CNN网络比浅层模型LeNet表现出了更强识别性能。Short Cut结构具备明显优越性,有助于网络具备更强识别能力。该研究有助于提高减速器的运行效率,可将其拓宽到其他机械传动领域,具有很好的应用价值。  相似文献   

5.
为了提升对RV减速器的故障诊断的准确率,采用残差网络诊断RV减速器的故障。通过振动试验台测得RV减速器4种故障模式与正常模式下的振动信号,由此构造训练和测试数据集,并对训练集进行数据增强处理。然后将截取的一维信号样本预处理转换为二维信号样本,输入残差网络进行训练和5折交叉验证。接着通过残差网络的分类准确率与DNN、LeNet、10层CNN等模型的准确率进行比较,结果表明残差网络优于传统方法,对RV减速器故障的分类准确率达到了98.11%。进一步采用了西储大学轴承数据集对模型的泛用性进行验证。最终,通过LDA(线性判别分析)对残差网络平均池化层的输出进行降维,分析了散点图与RV减速器故障类型之间的关系。  相似文献   

6.
滚动轴承是风电机组关键部件,其运行工况复杂,故障类型难以准确识别。针对传统深度神经网络在强噪声环境下特征学习能力不足的问题,提出一种基于稠密连接模块的改进深度残差收缩网络(Deep residual shrinkage network based on dense block,DB-DRSN),实现强噪声、不同负载工况下滚动轴承故障的高效诊断。首先,将添加不同等级噪声的振动信号间隔采样并矩阵化,构建二维灰度图作为输入样本。然后,基于Dense block构造稠密连接残差收缩模块层(Residual shrinkage block unit based on dense block,DB-RSBU),利用Bottleneck层替代残差收缩模块中的卷积隐层,并加入Concat连接,达到对浅层和深层特征的充分利用。在每次稠密连接后通过1×1卷积进行降维,利用注意力模块和软阈值对逐通道特征赋不同阈值并降噪。最后,输入样本经过卷积池化层和DB-RSBU层堆叠的网络得到分类结果。试验表明,DB-DRSN模型在CWRU与PU滚动轴承数据集上不同噪声等级下的平均诊断准确率分别达到99.80%和96.4...  相似文献   

7.
针对轴承故障诊断过程中存在的特征提取复杂、分类器训练困难等问题,提出了一种基于残差网络和注意力机制相结合的滚动轴承故障诊断模型。该模型以滚动轴承的一维振动时序信号作为输入,通过残差网络完成特征提取,然后经带有注意力机制的双向长短记忆神经网络单元,实现特征在时序上的表达并赋予不同的权重,输出到分类器完成端到端的振动信号分类,完成滚动轴承故障的诊断。实验表明,该模型的诊断准确率可达99.86%以上,对各故障类别的诊断率均在99%以上,提取的特征信息区分度高;模型诊断准确率优于基于特征工程的诊断模型,稳定性优于其他基于深度学习的诊断模型。  相似文献   

8.
童靳于  罗金  郑近德 《中国机械工程》2021,32(21):2617-2624
为了提高深度自编码网络的特征挖掘能力,自适应地选取网络超参数,提出了一种增强深度自编码网络,并将其应用于滚动轴承故障诊断。采用最大相关熵代替均方误差作为自编码器的损失函数,加入稀疏惩罚项和嵌入非负约束因子的收缩惩罚项,进一步减小重构误差;通过灰狼优化算法自适应地选取网络关键参数。实验分析结果表明,与现有方法相比,该方法具有更强的特征提取能力与稳定性,对变工况下的轴承振动数据也能达到较高的识别精度。  相似文献   

9.
由于低压万能式断路器分合闸附件线圈回路为交流供电,合闸相位的随机性会导致同一运行状态下电流信号存在差异。针对此问题,提出了一种基于深度残差网络的故障诊断算法。首先采用信号堆叠的方法将一维电流信号转化为二维灰度图像;其次采用APReLU代替ReLU激活函数实现对深度残差网络的改进,并采用AMSGrad优化算法提高故障诊断识别率;最后利用断路器实测数据进行验证。结果表明:该故障诊断模型能够克服合闸相位的随机性对诊断结果的影响,完成故障分类。  相似文献   

10.
旋转机械作为当前制造业中最常使用的设备之一,对其系统的安全可靠性提出了很高的要求,而滚动轴承在其中起到举足轻重的作用,若在工程实践当中出现故障小则引起机器失效导致无法正常工作,大则危及现场人员生命安全造成巨大的损失。因此如何实现对滚动轴承的故障检测从而保证旋转机械的安全使用是很一个重要的问题。主要从滚动轴承特征信号提取及诊断两个方面,归纳总结近几年相关领域的重要理论和前沿研究成果。最后,就当下存在的不足,分析可能遇到的挑战,并展望未来的研究趋势。  相似文献   

11.
振动信号模型在滚动轴承故障诊断中的应用   总被引:1,自引:0,他引:1  
为了克服传统故障诊断流程的缺点,提出一种基于EMD(Empirical Mode Decomposition)和振动信号模型的滚动轴承故障诊断方法,首先根据滚动轴承振动机理和振动信号的特征,建立了滚动轴承在正常和各种典型故障时的信号模型,然后采用EMD对原始振动信号做分解,并以峭度为依据进行信号重构,最后计算重构信号与不同信号模型之间的相关系数,根据系数大小可准确判断故障类型。通过对实验平台信号和风力发电机组齿轮箱滚动轴承振动信号的分析,验证了该方法的有效性和实用性。  相似文献   

12.
基于奇异值分解的滚动轴承故障诊断的神经网络方法   总被引:1,自引:0,他引:1  
径向基函数神经网络是一种三层前馈型神经网络,它具有较强的非线性函数逼近能力和分类能力.根据径向基函数神经网络的优点,在对滚动轴承振动信号故障特征分析的基础上,提出一种应用奇异值分解将高维相关变量转化为低维独立变量,并利用其特征值建立径向基函数神经网络的方法,同时将该网络用于对滚动轴承的故障诊断.理论和试验证明了该方法的有效性,且具有较高的故障分类精度.  相似文献   

13.
改进希尔伯特-黄变换的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
针对希尔伯特-黄变换中经验模态分解方法存在的端点效应和虚假固有模态函数的问题,提出一种改进希尔伯特-黄变换方法并将此方法应用于滚动轴承故障诊断中。首先,利用最小二乘支持向量机和镜像延拓相结合的方法来抑制端点效应;其次,采用敏感固有模态函数选择算法选出反映故障特征的敏感固有模态函数;最后,利用敏感固有模态函数的包络谱进行故障诊断。通过仿真分析和应用实例可看出,该方法能够有效提取出滚动轴承故障信号的特征信息并准确诊断出引起滚动轴承的故障原因。  相似文献   

14.
为及时提取滚动轴承的有效故障特征,准确识别其故障状态,提出一种多域特征提取和多维马田系统(MD-MTS)相结合的故障诊断方法.该方法主要包括三个方面的内容:振动信号的多域特征提取、基于MD-MTS的故障诊断模型构建和实验验证.首先,利用统计分析、快速傅里叶变换(FFT)、Hilbert变换和改进的经验模态分解(EMD)...  相似文献   

15.
设计了一种便携式滚动轴承故障智能诊断系统,对系统的工作原理、硬件结构及软件技术进行了详细的描述。该诊断系统除具有“便携式”的特征外,还具有操作简便,测试、诊断与分析自动化、智能化等特点,适用于生产现场对滚动轴承故障进行快速、自动地诊断。  相似文献   

16.
滚动轴承故障诊断机理研究   总被引:1,自引:0,他引:1  
滚动轴承是常用机械组件,对其故障机理和诊断方法进行研究,能有效提高其安全性和可靠性。通过建立滚动轴承非线性动力学模型,计算出轴承故障振动响应。在模型计算结果中添加谐波分量和白噪声干扰,通过EEMD分解和峭度分析方法,抑制噪声干扰,突显故障特征信号。以深沟球轴承6205为例验证了故障诊断方法的有效性和动力学模型的正确性。首先建立非线性动力学模型,通过计算分析,揭示故障机理。利用基于EEMD的故障诊断方法,有效地突显故障信号,并验证动力学模型正确性。  相似文献   

17.
针对最小二乘支持向量机(LSSVM)实现过程中盲目选择核函数的现象,提出了一种基于核极化的多核LSSVM与EMD相结合的滚动轴承故障识别算法。首先,对滚动轴承振动信号进行EMD信号提取,进而提取故障特征向量;然后,根据多核构造原理,引入核极化确定基本核函数的组合权系数,构造多核函数;最后,结合多核函数与LSSVM,形成多核LSSVM学习器,进行故障识别。分析滚动轴承正常状态、内圈故障、外圈故障和滚动体故障的诊断实验结果,可知,EMD与多核LSSVM的故障识别算法可以准确地判断滚动轴承的工作状态和故障类型,并与SVM、LSSVM算法的诊断结果进行对照,表明所提算法的故障识别率更高。  相似文献   

18.
研究强分类器ELM-Adaboost模型在滚动轴承故障诊断中的运用.首先,从滚动轴承故障振动信号中提取时域特征参数,并采用因子分析法对变量进行降维处理;其次,对ELM-Adaboost模型中的关键参数进行详细分析,并选择最优的参数对ELM-Adaboost模型进行优化;最后,将ELM-Adaboost模型用于滚动轴承故...  相似文献   

19.
滚动轴承故障的灰色GM模型预测   总被引:6,自引:0,他引:6  
本文通过大量实验,获取滚动轴承时域特征参数,应用灰色GM模型进行故障预测,实验表明,灰色理论用于故障预测,具有较高的预测精度,适宜在故障预测领域作应用推广。  相似文献   

20.
基于复合信号处理的滚动轴承早期微故障诊断研究   总被引:1,自引:0,他引:1  
针对滚动轴承早期故障的微弱信号检测问题,将小波包、谱峭度和包络分析三者相结合,提出一种新的故障诊断方法,该方法首先通过小波包降噪提取原始含噪信号中的高频成分并提高信噪比,然后对降噪后的重构信号应用谱峭度理论来确定合适的带通滤波参数,最后对带通滤信号进行包络解调而得出故障特征频率信号,从而实现滚动轴承的早期微弱故障诊断。对基于小波包和谱峭度的故障诊断法在滚动轴承故障诊断中的应用进行了研究,实验结果表明该方法可以有效抑制背景噪声,提取有用故障信息,为滚动轴承的故障诊断提供了一种切实可行的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号