共查询到12条相似文献,搜索用时 62 毫秒
1.
针对孔径100~200μm高深宽比微细孔电解加工中,电极侧壁绝缘层在电解液冲击和气泡撕裂中易损伤/脱落等问题,本文提出一种丙烯酸环氧树脂电泳法的中空电极侧壁绝缘制备工艺。通过优化工艺参数并开展加工实验,比较加工孔尺寸及形貌、加工后电极表面形态,结果表明丙烯酸环氧树脂电泳法制备的中空电极侧壁绝缘层,具有较高的致密性、均匀性、耐久性和一致性。最后,在500μm厚304不锈钢片上加工出入口180.6μm、出口173.8μm、深宽比约为3的微细阵列孔,其锥度比非侧壁绝缘电极加工的孔减少了约70%以上,基本为直孔,可满足实际需求,进而验证了本方法的应用可行性。 相似文献
2.
为了改进加工间隙内电解产物的排出条件和加速电解液的更新,提出了一种嵌套式微细中空电极的精确可控焊接制备工艺。仿真分析了电极的过流特性,优化了电极长度,并进行了性能测试及加工实验。通过穿丝、黏结、嵌套尺寸及位置调整和焊接工序,制备出加工段内径为65μm、外径为130μm、长3.25mm左右,后段便于装夹和连通的嵌套式中空电极。在供液压力为1.15 MPa时,其出口流速可达10m/s左右。利用制备的中空电极,开展微细孔电解加工实验,在0.5mm厚不锈钢片上加工出最小入口孔径约为157μm,出口孔径约为133μm的微细孔,并将其延伸应用于微结构加工中,铣削出了长554μm、宽160μm、深224μm的微细T型槽。实验结果表明:制备的微细中空电极有效提高了加工间隙内电解液的流动特性,且连/导通可靠、装夹方便,适用于高深宽比微结构的电解加工。 相似文献
3.
微细工具电极在电火花和电解加工中起到关键作用。对微细工具电极的制备方法:反拷法、线电极电火花磨削法以及电化学腐蚀法进行了分析,同时研究了不同方法在异形微细电极制备过程中的应用,在此基础上总结了微细工具电极绝缘层制备方法。通过对电极和绝缘层制备方法的研究,为新式异形工具电极的设计和制备提供技术借鉴,对微细工具电极的结构创新及更高精度的微孔加工具有重要意义。 相似文献
4.
如何降低加工间隙中气体密集度的问题,目前已引起电解加工行业的极大关注。这是因为加工过程中析出的气体,对于加工精度、生产率、耗电量以及表面质量等电解加工工艺特性,都将产生不良的影响。而加工间隙中气体浓度不均匀以及阴极附近的超高浓度乃是导致这种不良影响的主要原因。这样将使电解液的导电率降低和电流密度沿加工间隙通道长度的相应分配。当加工长尺寸 相似文献
5.
6.
施纪红 《机械制造与自动化》2009,38(3):137-138
针对微小孔微细电解加工工艺中,进行短路对刀、进给及短路监测的控制系统设计.试验表明,此对刀系统可以快速、精确设定加工间隙.通过对短路的监测,发现加工过程中短路的现象明显减少. 相似文献
7.
8.
高频窄脉冲电流微细电解加工 总被引:4,自引:2,他引:4
微细电解加工是微细加工领域很有发展前景的微细加工技术之一。适合于微细电解加工的装置被研制出来, 它包括机床进给机构、线电极电火花磨削在线制作微细电极装置、短路检测模块、脉冲电源及其他一些辅助装置, 其中,高频窄脉冲电源是微细电解加工最重要的核心技术之一。根据微细电解加工的特点,设计了微细电解加工 MOSFET脉冲电源,该微能脉冲电源能很好地满足微细电解加工的要求。运用该微细电解加工装置进行加工试验, 在低的加工电压和低的钝化电解液浓度条件下,利用高速旋转的微细电极加工微小孔和像小铣刀一样进行微细电解铣削加工微结构,得到了满意的工艺效果,因而进一步说明电解加工在微细加工领域很有发展潜力。 相似文献
9.
射流电解加工广泛应用在航天、军工、汽车、电子等制造领域,多用来进行工件表面微结构的加工,是一种高效低成本的方法。电极丝前置式射流电解加工利用液束中的电极丝将电场集中约束在主要加工区域,相比于传统射流电解有着更高的加工效率和质量。通过搭建试验平台并在不锈钢工件表面进行微槽铣削试验,验证了该方法的实际加工效果,初步得到了电压、电极丝直径、单次进给量等参数对加工结果影响的工艺规律。当选用直径100μm侧壁绝缘的电极丝时,扫描5次可以得到槽宽最小为400μm,槽深120μm的直槽。试验结果表明,电压和加工间隙影响电流密度的大小,主要决定了加工效率和质量,而电极丝和液束的状态则决定了特征的精度和形貌。 相似文献
10.
基于线电极原位制作的微细电解线切割加工 总被引:1,自引:1,他引:0
微细电解线切割加工是一种微细加工新方法。从理论上分析了线电极直径大小对微细电解线切割加工精度的影响,提出了原位制作微米尺度线电极的方法,并制作出直径5μm的钨丝线电极。通过电解线切割加工试验,加工出缝宽为20μm左右的微型桨叶结构和曲率半径在1μm以下的微细尖角结构。 相似文献
11.
12.
现代制造过程中,工件的质量受到多种误差源的影响,在辨识出加工过程的误差源之后,如何调整过程来补偿加工误差已成为一个重要的技术难题。考虑加工过程调整中噪声信息对调整效果的影响,提出了一种基于小波实时去噪的多元工程过程控制调整方法。首先采用小波实时去噪方法对含有噪声信息的测量数据进行实时滤波处理,再根据滤波状态来预测生产过程接下来可能出现的加工误差,进而通过多元指数加权移动平均控制器计算调整夹具定位销的长度来补偿加工特征误差,提高产品加工精度。最后以叶片的简化模型为例,通过产品加工特征输出误差值的变化验证了加工过程误差调整方法的有效性。 相似文献