首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Cai SS  Syage JA 《Analytical chemistry》2006,78(4):1191-1199
In this work, we compare the quantitative accuracy and sensitivity of analyzing lipids by atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI) LC/MS. The target analytes include free fatty acids and their esters, monoglyceride, diglyceride, and triglyceride. The results demonstrate the benefits of using LC/APPI-MS for lipid analysis. Analyses were performed on a Waters ZQ LC/MS. Normal-phase solvent systems were used due to low solubility of these compounds in aqueous reversed-phase solvent systems. By comparison, APPI offers lower detection limits, generally highest signal intensities, and the highest S/N ratio. APPI is 2-4 times more sensitive than APCI and much more sensitive than ESI without mobile-phase modifiers. APPI and APCI offer comparable linear range (i.e., 4-5 decades). ESI sensitivity is dramatically enhanced by use of mobile phase modifiers (i.e., ammonium formate or sodium acetate); however, these ESI adduct signals are less stable and either are nonlinear or have dramatically reduced linear ranges. Analysis of fish oils by APPI shows significantly enhanced target analyte intensities in comparison with APCI and ESI.  相似文献   

2.
Atmospheric pressure photoionization (APPI) has been successfully demonstrated to provide high sensitivity to LC-MS analysis. A vacuum-ultraviolet lamp designed for photoionization detection in gas chromatography is used as a source of 10-eV photons. The mixture of samples and solvent eluting from an HPLC is fully evaporated prior to introduction into the photoionization region. In the new method, large quantities of an ionizable dopant are added to the vapor generated from the LC eluant, allowing for a great abundance of dopant photoions to be produced. Because the ion source is at atmospheric pressure, and the collision rate is high, the dopant photoions react to completion with solvent and analyte molecules present in the ion source. Using APPI, at an LC flow rate of 200 microL/min, it is possible to obtain analyte signal intensities 8 times as high as those obtainable with a commercially available corona discharge-atmospheric pressure chemical ionization source.  相似文献   

3.
A generic high-performance liquid chromatography (HPLC) system interfaced with an atmospheric pressure photoionization (APPI) source and a tandem mass spectrometer was developed for the quantitative determination of small molecules in plasma in support of exploratory in vivo pharmacokinetics. This report summarizes the effects of variations in reversed-phase mode HPLC conditions such as mobile-phase flow rate, solvent composition, organic modifier content, and nebulizer temperature on the photoionization efficiency of both clozapine and lonafarnib. The matrix ionization suppression effect on this method was investigated using the postcolumn infusion technique. The procedure was used to quantitate plasma levels following oral administration of 42 drug discovery compounds to rats. The pharmacokinetic results of 42 drug discovery compounds in rats evaluated by both APPI and atmospheric pressure chemical ionization interfaces were found to be well correlated.  相似文献   

4.
In this work, we compared APPI and APCI for normal-phase LC/MS chiral analysis of five pharmaceuticals. Performance was compared both by FIA and by on-column analysis using a ChiralPak AD-H column under optimized conditions. By comparison, APPI generated more reproducible signals and was less susceptible to ion suppression than APCI. APPI generated higher peak area and lower baseline noise, and therefore much higher S/N ratios. APPI sensitivity (i.e., S/N ratio) was approximately 2-130 times higher than APCI by FIA and was approximately 2.6-530 times higher than APCI by on-column analysis depending on specific compounds. The better APPI sensitivity as compared to APCI was more dramatic by on-column analysis than by FIA. APCI sensitivity was degraded by ion suppression caused by LC column bleeding components and by elevated APCI baseline noise relative to APPI. On-column APPI LODs (at S/N = 3) were 83, 16, 17, 95, and 7 pg for enantiomer #1, and 104, 23, 19, 122, and 17 pg for enantiomer #2 for benzoin, naringenin, mianserin, mephenesin, and diperodon, respectively, on a Waters ZQ. APPI offers no concern of explosion hazard relative to APCI corona needle discharge or ESI high voltage discharge when flammable solvents (e.g., hexane) are used as mobile phases. Whether APPI dopants are required depends on the IP(s) of mobile-phase solvent(s) and solvent complexes, and photon energies of VUV lamps. Dopant was not necessary for hexane-based mobile phases due to their self-doping effects. Dopants did enhance Kr lamp APPI sensitivity when MeOH was used as the mobile phase. However, dopants became unnecessary for the MeOH mobile phase when the Ar lamp was used.  相似文献   

5.
Atmospheric pressure photoionization (APPI) is presented as a novel means for the combination of micellar electrokinetic chromatography (MEKC) and mass spectrometry (MS). The on-line coupling is achieved using an adapted sheath flow interface installed on an orthogonal APPI source. Acetone or toluene is added as dopant to the sheath liquid to enhance analyte photoionization. It is demonstrated that with APPI signal suppression and interferences by the surfactant sodium dodecyl sulfate (SDS) and nonvolatile buffers can be circumvented. This implies that MEKC conditions can be selected independently from MS detection. Moreover, it is shown that both polar and apolar compounds can be photoionized, thereby also facilitating the analysis of compounds that are not amenable to electrospray ionization. Consequently, the MEKC-APPI-MS system can provide effective separation and detection of compounds of diverse character in one run using background electrolytes containing up to 50 mM SDS. Concentration limits of detection derived from extracted-ion traces (full scan mode) of test compounds were approximately 1 microg/mL, and the detection sensitivity remained unaffected during 1 day of continuous use. Overall, the system features are very favorable for applications such as drug impurity profiling as is illustrated by the analysis of mebeverine and related compounds (both charged and neutral) at the 0.25% (w/w) level.  相似文献   

6.
The applicability of different ionization techniques, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and a novel atmospheric pressure photoionization (APPI), were tested for the identification of the phase II metabolites of apomorphine, dobutamine, and entacapone in rat urine and in vitro incubation mixtures (rat hepatocytes and human liver microsomes). ESI proved to be the most suitable ionization method; it enabled detection of 22 conjugates, whereas APCI and APPI showed only 12 and 14 conjugates, respectively. Methyl conjugates were detected with all ionization methods. Glucuronide conjugates were ionized most efficiently with ESI. Only some of the glucuronides detected with ESI were detected with APCI and APPI. Sulfate conjugates were detected only with ESI. MS/MS experiments showed that the site of glucuronidation or sulfation could not be determined, since the primary cleavage was a loss of the conjugate group (glucuronic acid or SO3), and no site-characteristic product ions were formed. However, it may be possible to determine the site of methylation, since methylated products are more stable than glucuronides or sulfates. Furthermore, the loss of CH3 is not necessarily the primary cleavage, and site characteristic products may be formed. Identification and comparison of conjugates formed from the current model drugs were successfully analyzed in different biological specimens of common interest to biomedical research. A fairly good relation was obtained between the data from in vivo and in vitro models of drug metabolism.  相似文献   

7.
In this work, we describe the performance of an atmospheric pressure photoionization (APPI) source for sampling liquid flows. The results presented here primarily focus on the mechanism of direct photoionization (PI), as compared to the dopant mechanism of PI. Measured detection limits for direct APPI were comparable to atmospheric pressure chemical ionization (APCI; e.g., 1 pg for reserpine). The ion signal is linear up to 10 ng injected quantity, with a useful dynamic range exceeding 100 ng. Evidence is presented indicating that APPI achieves significantly better sensitivity than APCI at flow rates below 200 microL/min, making it a useful source for capillary liquid chromatography and capillary electrophoresis. Results are presented indicating that APPI is less susceptible to ion suppression and salt buffer effects than APCI and electrospray ionization (ESI). The principal benefit of APPI, as compared to other ionization sources, is in efficiently ionizing broad classes of nonpolar compounds. Thus, APPI is an important complement to ESI and APCI by expanding the range and classes of compounds that can be analyzed. In this paper, we also discuss the role of direct APPI vs PI-induced APCI using dopants.  相似文献   

8.
The ionization mechanism in dopant-assisted atmospheric pressure photoionization and the effect of solvent on the ionization efficiency was studied using 7 naphthalenes and 13 different solvent systems. The ionization efficiency was 1-2 orders of magnitude higher with dopant than without, indicating that the photoionization of the dopant initiates the ionization process. In positive ion mode, the analytes were ionized either by charge exchange or by proton transfer. Charge exchange was favored for low proton affinity solvents (water, hexane, chloroform), whereas the addition of methanol or acetonitrile to the solvent initiated proton transfer. In negative ion mode, the compounds with high electron affinity were ionized by electron capture or by charge exchange and the compounds with high gas-phase acidity were ionized by proton transfer. In addition, some oxidation reactions were observed. All the reactions leading to ionization of analytes in negative ion mode are initiated by thermal electrons formed in photoionization of toluene. The testing of different solvents showed that addition of buffers such as ammonium acetate, ammonium hydroxide, or acetic acid may suppress ionization in APPI. The reactions are discussed in detail in light of thermodynamic data.  相似文献   

9.
Good reliability of Caco-2 permeability studies requires competent sampling and analytical methods to ensure the comparability of day-to-day experiments. In this work, two n-in-one LC/MS/MS methods based on two different ionization techniques were developed and validated for a group of reference compounds; eight of them are recommended by the Food and Drug Administration (FDA) for the evaluation of oral drug permeability. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), as an interface for quantitative LC/MS analysis was evaluated in comparison to the electrospray ionization (ESI). Generally, the validation parameters, including sensitivity, accuracy, and repeatability, were comparable for the APPI and ESI methods. The main difference was that the linear quantitative range of APPI was 3-4 orders of magnitude (r(2) >/= 0.998) whereas in ESI it was typically 2-3 orders of magnitude (r(2) >/= 0.990). By the APPI and ESI methods, the simultaneous analysis of nine highly heterogeneous compounds was achieved within 5.5-7 min, which leads to significant savings in time and cost of the analyses. The successful validation data indicate the usefulness of both the methods for the rapid and sensitive (LOD values typically 相似文献   

10.
A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production.  相似文献   

11.
In a previous study on capillary electrophoresis-atmospheric pressure photoionization mass spectrometry (CE-APPI-MS), it was observed that the formation of gas-phase ions does not always proceed through photon-induced mechanisms (Hommerson, P.; Khan, A. M.; De Jong, G. J.; Somsen, G. W. Electrophoresis 2007, 28, 1444-1453). That is, analyte signals were observed when the VUV excitation source was switched off. The aim of the present study was to further explore this photon-independent ionization (PII) process. Parameters such as MS capillary voltage, compound nature, background electrolyte (BGE) composition, and presence of dopants were studied using a CE-APPI-MS setup. Infusion experiments showed a relatively low MS capillary voltage of approximately 600 V to be the main prerequisite for PII. Quaternary ammonium compounds showed strong responses in PII-MS but could not be observed in dopant-assisted APPI. Basic amines could be ionized by both photoionization (PI) and PII, whereas neutral compounds (steroids) could only be observed using PI. Nonvolatile BGEs appeared to cause substantial ionization suppression in PII, while PI signals remained largely unaffected. Selection of the proper interface and MS settings allowed PI and PII to proceed simultaneously, which broadened the range of compounds that could be analyzed in a single CE-APPI-MS run. Based on the observed characteristics, it is concluded that PII most probably occurs by a liquid-phase ionization mechanism, which appears to arise in the APPI source when specific conditions are selected.  相似文献   

12.
A different design for the atmospheric pressure photoionization (APPI) source, other than commercially available sources, such as PhotoSpray and PhotoMate, has been proposed. Unlike PhotoSpray, this design applies an electric field to separate photoions and electrons. In addition, the UV radiation is parallel to the gas stream toward the mass spectrometer sampling aperture. The total ion current obtained using this geometry, for dopant only, could be an order of magnitude larger than that obtained using the PhotoSpray design. Additionally, to prevent the negative effect of solvent on the photoionization yield, a curtain electrode was mounted in front of the UV lamp to divide the ionization zone into two distinct regions: the dopant and the solvent regions. Dopant was introduced in the vicinity of the lamp, and vaporized solvent was introduced into the solvent region. The curtain electrode prevented the solvent from entering the dopant region where dopant was directly photoionized. This design consumes much less dopant (approximately 1/10 less) than the conventional source, which minimizes the presence of photofragmented radicals and dopant trace contaminants in the ionization region. As a result, unlike PhotoSpray, the mass spectra contained mainly the analyte and solvent peaks. Additionally, the source was tested using an ion mobility spectrometer (IMS). The effect of the curtain electrode on signal intensity and performance of the source using IMS was also proved to be positive.  相似文献   

13.
The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively.  相似文献   

14.
The factors influencing desorption and ionization in newly developed desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) were studied. Redirecting the DAPPI spray was observed to further improve the versatility of the technique: for dilute samples, parallel spray with increased analyte signal was found to be the best suited, while for more concentrated samples, the orthogonal spray with less risk for contamination is recommended. The suitability of various spray solvents and sampling surface materials was tested for a variety of analytes with different polarities and molecular weights. As in atmospheric pressure photoionization, the analytes formed [M + H](+), [M - H](-), M(+*), M(-*), [M - H + O](-), or [M - 2H + 2O](-) ions depending on the analyte, spray solvent, and ionization mode. In positive ion mode, anisole and toluene as spray solvents promoted the formation of M(+*) ions and were therefore best suited for the analysis of nonpolar compounds (anthracene, benzo[a]pyrene, and tetracyclone). Acetone and hexane were optimal spray solvents for polar compounds (MDMA, testosterone, and verapamil) since they produced intensive [M + H](+) ion peaks of the analytes. In negative ion mode, the type of spray solvent affected the signal intensity, but not the ion composition. M(-*) ions were formed from 1,4-dinitrobenzene, and [M - H + O](-) and [M - 2H + 2O](-) ions from 1,4-naphthoquinone, whereas acidic compounds (naphthoic acid and paracetamol) formed [M - H](-) ions. The tested sampling surfaces included various materials with different thermal conductivities. The materials with low thermal conductivity, i.e., polymers like poly(methyl methacrylate) and poly(tetrafluoroethylene) (Teflon) were found to be the best, since they enable localized heating of the sampling surface, which was found to be essential for efficient analyte desorption. Nevertheless, the sampling surface material did not affect the ionization mechanisms.  相似文献   

15.
Desorption atmospheric pressure photoionization   总被引:3,自引:0,他引:3  
An ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), is presented, and its application to the rapid analysis of compounds of various polarities on surfaces is demonstrated. The DAPPI technique relies on a heated nebulizer microchip delivering a heated jet of vaporized solvent, e.g., toluene, and a photoionization lamp emitting 10-eV photons. The solvent jet is directed toward sample spots on a surface, causing the desorption of analytes from the surface. The photons emitted by the lamp ionize the analytes, which are then directed into the mass spectrometer. The limits of detection obtained with DAPPI were in the range of 56-670 fmol. Also, the direct analysis of pharmaceuticals from a tablet surface was successfully demonstrated. A comparison of the performance of DAPPI with that of the popular desorption electrospray ionization method was done with four standard compounds. DAPPI was shown to be equally or more sensitive especially in the case of less polar analytes.  相似文献   

16.
Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.  相似文献   

17.
The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.  相似文献   

18.
A simple method for direct coupling of gas chromatography (GC) with electrospray ionization mass spectrometry (ESI/MS) has been developed. The outlet of the GC capillary column was placed between the ESI needle and the atmospheric pressure ionization (API) source of a mass spectrometer. The ionization occurs via dissolution of neutral compounds into the charged ESI droplet followed by ion evaporation or via a gas-phase proton transfer reaction between a protonated solvent molecule and an analyte. The mass spectra of organic volatile compounds showed abundant protonated molecules with little fragmentation, being very similar to those produced by normal liquid ESI. The quantitative performance of the system was evaluated by determining the limit of detection (LOD), linearity ( r (2)), and repeatability (RSD). The GC-ESI/MS method was shown to be stable, providing high sensitivity and good quantitative performance.  相似文献   

19.
Desorption electrospray ionization (DESI) mass spectrometry is used for the rapid (<5 s), selective, and sensitive detection of trace amounts of the peroxide-based explosives, hexamethylene triperoxide diamine (HMTD), tetracetone tetraperoxide (TrATrP), and triacetone triperoxide (TATP), directly from ambient surfaces without any sample preparation. The analytes are observed as the alkali metal ion complexes. Remarkably, collision-induced dissociation (CID) of the HMTD, TATP, and TrATrP complexes with Na(+), K(+), and Li(+) occurs with retention of the metal, a process triggered by an unusual homolytic cleavage of the peroxide bond, forming a distonic ion. This is followed by elimination of a fragment of 30 mass units, shown to be the expected neutral molecule, formaldehyde, in the case of HMTD, but shown by isotopic labeling experiments to be ethane in the cases of TATP and TrATrP. Density functional theory (DFT) calculations support the suggested fragmentation mechanisms for the complexes. Binding energies of Na+ of 40.2 and 33.1 kcal/mol were calculated for TATP-Na(+) and HMTD-Na(+) complexes, suggesting a strong interaction between the peroxide groups and the sodium ion. Increased selectivity is obtained either by MS/MS or by doping the spray solvent with additives that produce the lithium and potassium complexes of TATP, HMTD, and TrATrP. Addition of dopants into the solvent spray increased the signal intensity by an order of magnitude. When pure alcohol or aqueous hydrogen peroxide was used as the spray solvent, the (HMTD + Na)+ complex was able to bind a molecule of alcohol (methanol or ethanol) or hydrogen peroxide, providing additional characteristic ions to increase the selectivity of analysis. DESI also allowed the rapid detection of peroxide explosives in complex matrixes such as diesel fuel and lubricants using single or multiple cation additives (Na(+), K(+), and Li(+), and NH4(+)) in the spray solvent. Low-nanogram detection limits were achieved for HMTD, TrATrP, and TATP in these complex matrixes. The DESI response was linear over 3 orders of magnitude for HMTD and TATP on paper surfaces (1-5000 ng), and quantification of both peroxide explosives from paper gave precisions (RSD) of less than 3%. The use of pure water and compressed air as the DESI spray solution and nebulizing gas, respectively, showed similar ionization efficiencies to those obtained using methanol/water mixtures and nitrogen gas (the typical choices). An alternative ambient method, desorption atmospheric pressure chemical ionization (DAPCI), was also used to detect trace amounts of HMTD and TATP in air by complexation with gas-phase ammonium ions (NH4(+)) generated by atmospheric pressure ammonia ionization.  相似文献   

20.
An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple PKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号