首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, experimental investigations on stitched and unstitched woven carbon/epoxy laminates under high strain rate compression loading are discussed. Stitched/unstitched laminates are fabricated with aerospace grade plain and satin weave fabrics with room temperature curing SC-15 epoxy resin using affordable vacuum assisted resin infusion molding process. The samples are subjected to high strain rate loading using modified compression split Hopkinson’s pressure bar at three different strain rates ranging from 320 to 1149 s−1. Results are discussed in terms of unstitched/stitched configuration, fabric type and loading directions. Dynamic compression properties are compared with those of static loading. Failure mechanisms are characterized through optical and scanning microscopy.  相似文献   

2.
The insertion of transverse reinforcing threads by stitching is a very promising technique to restrict impact damage growth and to improve post-impact residual strength of laminates. In order to develop general models capable of addressing the issues of impact resistance and damage tolerance of stitched laminates, detailed understanding of the nature and extent of damage, identification of the dominant fracture modes and assessment of the effect of stitches on the damage development are essential. In this study, both instrumented drop-weight tests and compression-after-impact tests were carried out to examine and compare the damage responses of stitched and unstitched graphite/epoxy laminates subjected to low-velocity impact. The progression of damage and its effect on post-impact performance was investigated in detail in two classes of cross ply laminates ([03/903]s and [0/90]3s) by means of an extensive series of damage observations, conducted with various complementary techniques (X-radiography, ultrasonics, optical microscopy, deply). The results of the analyses carried out during the study to characterize the key fracture modes and to clarify their relationship with the structural performance of both stitched and unstitched laminates are reported and discussed in the paper.  相似文献   

3.
The impact response of stitched graphite/epoxy laminates was examined with the aim of evaluating the efficiency of stitching as a reinforcing mechanism able to improve the delamination resistance of laminates. The investigation, which focussed on two classes of cross-ply stacking sequences ([03/903]s and [0/90]3s), showed that the role of stitches in controlling damage progression of laminates and their capability to reduce the impact sensitivity of specimens are greatly dependent on the impact behaviour of base (unstitched) laminates. In [03/903]s laminates, in particular, stitching is able to reduce damage area, on condition that the impact energy is higher than a threshold level and delaminations are sufficiently developed. In [0/90]3s laminates, on the other hand, stress concentration regions generated by the stitching process appear to promote the initiation and propagation of fibre fractures, thereby inducing a decrease in the penetration resistance of the laminate.  相似文献   

4.
The low velocity impact behavior of three layer thermoplastic laminates consisting of woven glass fiber and polypropylene has been investigated for two different fiber volume configurations. Panels with configurations of 50/50 and 20/80 in the warp and fill directions were subjected to low velocity impact energies between 4 and 16 J using an instrumented dropping weight impact tower. Load vs. displacement plots showed the excellent energy absorbing capabilities exhibited by the woven composites. Both configurations dissipated approximately 75% of the 16 J incident impact energy. An energy-balance model was used to successfully predict the impact response of the woven thermoplastic composites. The impact damaged plates were tested under four point bend (4 PB) loading conditions. Results showed a reduction in flexural strength and modulus as the impact energy increased. A simple compression molding damage repair process was applied to the 16 J impacted composite plates. 4 PB testing of the repaired samples revealed a significant recovery in the flexural strength and modulus of the thermoplastic woven composite with both fiber configurations.  相似文献   

5.
An experimental study is described in this paper dealing with the tensile–tensile fatigue and the quasi-static post-fatigue tensile behaviour of a structurally stitched multi-ply carbon composite and the unstitched counterpart. The influence of the stitching on the fatigue life and on the residual post-fatigue quasi-static properties in two principal direction is investigated. The fatigue behaviour of both composites is represented by Wöhler-like diagrams. The damage imparted during fatigue is studied by X-ray analyses. The residual mechanical properties of the fatigued composites after different number of cycles are compared in term of stiffness and strength. The post-fatigue quasi-static tensile tests include acoustic emission (AE) registration and full-field surface strain mapping (SM) to investigate the damage onset and development. The main conclusions of the experimental work are: the fatigue life is improved in the direction of the structural stitching and is reduced in the orthogonal direction; for the considered cyclic stress level the post-fatigue reduction of the mechanical properties is limited by the structural stitching.  相似文献   

6.
We investigate dynamic fracture of three types of multiwalled carbon nanotube (MWCNT)/epoxy composites and neat epoxy under high strain-rate loading (105106 s−1). The composites include randomly dispersed, 1 wt%, functionalized and pristine CNT/epoxy composites, as well as laminated, ∼50 wt% CNT buckypaper/epoxy composites. The pristine and functionalized CNT composites demonstrate spall strength and fracture toughness slightly higher and lower than that of neat epoxy, respectively, and the spall strength of laminated CNT buckypaper/epoxy composites is considerably lower; both types of CNTs reduce the extent of damage. Pullout, sliding and immediate fracture modes are observed; the fracture mechanisms depend on the CNT–epoxy interface strength and fiber strength, and other microstructures such as the interface between CNT laminates. Compared to the functionalized CNT composites, weaker CNT–epoxy interface strength and higher fiber strength lead to a higher probability of sliding fracture and higher tensile strength in the pristine CNT composites at high strain rates. On the contrary, sliding fracture is more pronounced in the functionalized CNT composites under quasistatic loading, a manifestation of a loading-rate effect on fracture modes. Despite their helpful sliding fracture mode and large CNT content, the weak laminate–laminate interfaces play a detrimental role in fracture of the laminated CNT buckypaper/epoxy composites. Regardless of materials, increasing strain rates leads to pronounced rise in tensile strength and fracture toughness.  相似文献   

7.
The deformation behaviors of woven glass/epoxy composite substrate under four thermo-mechanical loading paths, i.e. rectangular and triangular paths in clockwise and anticlockwise directions within a temperature range of 25–250 °C were investigated. Temperature scanning tests were conducted to identify the viscoelastic property of the material. The glass transition temperature of the composite substrate was 138 °C, above which significant reduction of storage modulus was observed. The deformation behavior of the composite substrate was temperature and history dependent, and change of deformation rate resulted from state transition was noticeable. The residual deformation of specimen following the anticlockwise rectangular loading path was the largest in contrast with the lowest in clockwise rectangular path. The residual deformations in two triangular paths were close after each cycle.  相似文献   

8.
This paper presents the results of current research on the fatigue life prediction of carbon/epoxy laminate composites involving twelve balanced woven bidirectional layers of carbon fibres and epoxy resin manufactured by a vacuum moulding method. The plates were produced with 3 mm thickness and 0.66 fibre weight fraction. The dog bone shape specimens were cut from these plates with the load line aligned with one of the fibre directions. The fatigue tests were performed using load control with a frequency of 10 Hz and at room temperature. The fatigue behaviour was studied for different stress ratios and for variable amplitude block loadings. The damage process was monitored in terms of the stiffness loss. The fatigue life of specimens submitted to block loading tests was modelled using Palmgren–Miner’s law and taking in to account the stress ratio effect. The estimated and experimental fatigue lives were compared and good agreement was observed.  相似文献   

9.
In the current work we present a computational investigation of high speed penetration response of 3D orthogonal woven fiber composites (3D OWC) utilizing sub-unit cell, meso-level partitioned damage mechanics with the specific aim of understanding the role of Z-fibers in the mechanical response. In our model, two primary sources of nonlinearities have been addressed – one resulting from the strain rate dependence and large deformation of the composite constituents and the other from evolving failure. We reduce a number of arbitrary parameters typically present in high speed models by taking advantage of specific geometrical properties of 3D OWC which prevent extensive delamination. This property allows us to partition the structure into resin impregnated fibers assumed to be wholly responsible for the progressive damage behavior and bulk resin which is identified as the source of visco-plasticity and strain rate dependence. The fibers are modeled as anisotropic linear elastic with strain rate dependent progressive damage evolution. The resin is modeled using an advanced high strain rate large deformation Mulliken–Boyce polymer model (Mulliken and Boyce 2006) together with a terminal thermo-mechanical failure criterion. The projectile is assumed to be cylindrical, isothermal, rigid and impacting at right angles to the plate. The shape of the damaged area and the extent of penetrative damage compares favorably with experiments. We find that Z-fibers aid in improving penetration and impact resistance by both energy absorption and structural engagement. However, we also find that they are susceptible to localized de-bonding especially around the winding crowns. In addition, we found crucial differences in mechanical response in wave propagation brought about by the interplay of fiber architecture and damage with respect to simplified membrane models.Finally, the Z-fibers were found to influence the shape and nature of the damaged area in the fibers compared to layered composites where the matrix damage is spread more evenly while the fiber damage is restricted towards the fiber axes directions.  相似文献   

10.
A qualitative analysis of experimental results from small caliber ballistic impact and dynamic indentation on a 3D glass fiber reinforced composite are presented. Microscopic analysis of the damaged specimens revealed that the current 3D weaving scheme creates inherently two weak planes which act as potential sites for delamination in the above experiments. It is concluded that while the z-yarns may be effective in limiting the delamination damage at low loads and at low rates of impact, at high loads and high loading rates delamination continues to be the dominant failure mode in 3D woven composites. It is shown that dynamic indentation can be used to capture the progression of damage during impact of 3D woven composites.  相似文献   

11.
研究了三维正交机织玄武岩/环氧树脂复合材料在180℃高温环境下老化不同时间后的低速冲击力学性能,测试得到了不同老化时间的试样在低速冲击过程中的载荷-位移曲线。研究发现:随着老化时间增加,三维正交机织玄武岩/环氧树脂复合材料能承受的最大载荷下降,位移逐渐增加,载荷-位移曲线斜率逐渐下降;随着冲击能量增加,老化条件相同的三维正交机织玄武岩/环氧树脂复合材料试样最大承受载荷增大,位移和曲线斜率增加。对高温老化后三维正交机织玄武岩/环氧树脂复合材料试样进行SEM观察,发现纤维与树脂基体脱粘有裂纹产生,且裂纹数目和面积随着老化时间延长而增加。   相似文献   

12.
A finite element (FE) model using coupling continuum shell elements and cohesive elements is proposed to simulate the compression after impact (CAI) behaviour and predict the CAI strength of stitched composites. Continuum shell elements with Hashin failure criterion exhibit the composite laminate damage behaviour; whilst cohesive elements using traction-separation law characterise the laminate interfaces. Impact-induced delamination is explicitly modelled by reducing material properties of damaged cohesive elements. Computational results have demonstrated the trend of increasing CAI strength with decreasing impact-induced delamination area. Spring elements are introduced into the model to represent through-thickness stitch thread in the composite laminates. Results in this study validate experimental finding that CAI strength is improved when stitching is incorporated into the composite structure. The proposed FE model reveals good CAI strength predictions and indicates good agreement with experimental results, making it a valuable tool for CAI strength prediction of stitched composites.  相似文献   

13.
14.
To predict the behavior of composites in case of low velocity impact, various material models are available in the literature. Damage evolves exponentially or linearly with strain in these models. These models are using either characteristic length ‘Lc’ or material exponent parameters, ’m’ to solve the problem of strain localization. A method to relate these parameter to each other is suggested here. The choice of material exponent, ‘m’ for a particular mesh size is also discussed. Low velocity impact simulations for E-glass/epoxy composite are performed using continuum damage mechanics based material model and compared with the experiments. The damage observed through the light projected area on the laminate, contact forces and displacement plots with respect to time were studied and compared with finite element analysis results to demonstrate the effectiveness of the model. Digital Image Correlation (DIC) technique is used for experimentation to obtain displacement on the surface of the plate.  相似文献   

15.
The cost-reduced manufacturing of complex textile preforms suitable for liquid composite moulding of high-performance fibre-reinforced polymer composites is of significant importance for today’s aerospace industry. In this study, stitching technologies combined with thermally induced preform stabilisation by incorporation of thermoplastic binder-materials are demonstrated to be one of the key approaches towards achieving this challenging goal. However, the potential reduction of the in-plane mechanical composite properties induced by stitching and/or added binders may outweigh the cost savings and the anticipated improvements of the out-of-plane performance. In order to obtain excellent overall mechanical composite properties, innovative low-melting temperature or soluble thermoplastic stitching yarns as well as their corresponding binder non-woven mats were utilised to prepare novel preforms for non-crimped carbon fibre-reinforced epoxy composites; effectively allowing an enhanced stabilisation of the dry performs by thermobonding. These promising results emphasize the feasibility and the benefits of adopting advanced stitching technologies for high-performance composites.  相似文献   

16.
Sandwich composite are used in numerous structural applications, with demonstrated weight savings over conventional metals and solid composite materials. The increasing use of sandwich composites in defense structures, particularly those which may be exposed to shock loading, demands for a thorough understanding of their response to suc highly transient loadings. In order to fully utilize their potential in such extreme conditions, design optimization of the skin and core materials are desirable. The present study is performed for a novel type of sandwich material, TRANSONITE® made by pultrusion of 3-D woven 3WEAVE® E-glass fiber composites skin preforms integrally stitched to polyisocyanurate TRYMERTM 200L foam core. The effect of core stitching density on the transient response of three simply supported sandwich panels loaded in a shock tube is experimentally studied in this work. The experimental program is focused on recording dynamic transient response by high-speed camera and post-mortem evaluation of imparted damage. The obtained experimental results reveal new important features of the transient deformation, damage initiation and progression and final failure of sandwich composites with unstitched and stitched foam cores. The theoretical study includes full 3-D dynamic transient analysis of displacement, strain and stress fields under experimentally recorded surface shock pressure, performed with the use of 3-D MOSAIC analysis approach. The obtained theoretical and experimental results for the transient central deflections in unstitched and two stitched foam core sandwiches are mutually compared. The comparison results reveal large discrepancies in the case of unstitched sandwich, much smaller discrepancies in the case of intermediate stitching density, and excellent agreement between theoretical and experimental results for the sandwich with the highest stitching density. The general conclusion is that further comprehensive experimental and theoretical studies are required in order to get a thorough understanding of a very complex behavior of composite sandwiches under shock wave loading.  相似文献   

17.
炭/炭复合材料高温力学行为研究   总被引:28,自引:12,他引:16  
借助三点弯曲试验和扫描电镜观察,对层压结构C C(2D)、三维整体编织结构C C(3D)在高温1700℃及室温下的弯曲力学行为进行了研究,总结了各自性能及损伤破坏的特点。试验结果表明:3DC C以纤维断裂的形式发生弯曲破坏,其弯曲强度、模量均远大于2DC C;对于2DC C,其弯曲破坏模式为基体的层间开裂,材料性能在很大程度上受到炭基体以及界面状态的控制;C C复合材料在高温下弯曲力学性能大幅提高,强度增加幅度高达45%以上,模量增加幅度达15.3%;高温下界面粘结强度增加,导致3DC C的损伤破坏模式有所变化。  相似文献   

18.
For a reliable design of components made of textile composites, a deep knowledge of their failure behaviour and of realistic damage models is necessary. Such models require the onset of damage and the evolution of different damage phenomena to be determined experimentally. In this context, an experimental damage analysis strategy is proposed here that combines crack density measurements, acoustic emission analysis and optical microscopy with the recording of stiffness degradation by ultrasonic wave speed measurements. The correlation between the results of quasi-static tests is discussed for two selected examples of textile composites: multi-layered flat bed weft-knitted glass fibre–epoxy composites and woven glass fibre–polypropylene composites made of hybrid fabrics.  相似文献   

19.
Thin 3D-woven SiCf/SiC samples were subjected to low velocity impact tests at room temperature. For this purpose, hemispherical impactors and circular supports of various diameters were used. The extent of damage was evaluated with the help of optical microscopy. Formation of micro-cracks initiating from the indented site is observed. The predominant internal damages (fiber bundle and matrix cracking) remain localized beneath the impactor. This is confirmed by thermography analysis and post-impact tensile tests. The diameter of the damaged zone can be related to the energy absorbed by the specimen during the impact event.  相似文献   

20.
The study investigates the effect of carbon nanotubes (CNTs) on the damage development in a woven carbon fiber/epoxy composite under quasi-static tension in the bias direction. The composite is produced by the resin transfer molding and contains 0.25 wt.% of CNTs in the matrix. The tensile tests are carried out till different strain levels and are accompanied with acoustic emission (AE) registration. The nano-modified composite possesses a higher stiffness and strain-to-failure. It also exhibits a significantly increased AE activity, both in terms of the number of events and the energy level, but reveals a lower crack density. The combined analysis of the AE data and X-ray images indicates that in the nano-modified composite cracks progress through the material in smaller jumps than in the virgin composite. The crack faces in the composite with CNTs also display a fine web of secondary fractures, which is not detected in the virgin composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号