首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以环氧树脂(EP)为基体,采用行星共混法制备了不同质量分数的微米BN/EP复合材料(EPM)和纳米BN/EP复合材料(EPN),分析了BN微、纳米填料对复合材料导热性能和电气绝缘性能的影响及其机理。结果表明:相同的BN质量分数下,EPN比EPM具有更高的热导率。EPM和EPN的电气强度随BN质量分数的提高先增大后减小,在相同BN质量分数下,EPN比EPM具有更高的电气强度;EP、EPN以及EPM的介电常数(εr)和介质损耗因数(tanδ)均随温度的升高而增大;同一温度下,EPM和EPN的εr均大于EP,而tanδ均小于EP。在80℃以下,EPM和EPN与EP的电导率相差不大;而在80℃以上,EPM和EPN的电导率显著低于EP,并且相同BN质量分数的EPN电导率明显低于EPM。BN微纳米填料的填充可显著提高环氧树脂的导热性能和高温下的电气绝缘性能。  相似文献   

2.
采用溶液共混法制备了钛酸钡/聚偏氟乙烯(BT/PVDF)复合材料,研究了BT粒度分布及含量对复合材料介电性能、电气强度、储能性能和热稳定性的影响.结果表明:相较于单一粒径BT,双粒径BT共同填充的协同作用使复合材料具有更加优异的综合性能,且协同作用在两种粒径的BT等质量比时表现最为显著.随着填料含量的增加,复合材料的介电常数增大,热稳定性提升,介质损耗因数保持在相对较低的水平.当BT质量分数为60%,两种粒径BT的质量比为5:5时,复合材料在100 Hz的介电常数达到46.5,是纯PVDF的5倍;其储能密度与极化强度分别为0.18 J/cm3和0.0119 C/m2,相比纯PVDF分别提高了176%和310%.热失重5%的分解温度达到478.4℃,分别比S-BT和L-BT单独填充的PVDF基复合材料提高了1.3℃和30.3℃.  相似文献   

3.
分别以钛酸钡纳米棒、钛酸钡纳米颗粒和钛酸钡微米颗粒作为填料,以聚偏氟乙烯(PVDF)作为基体,制备了3个系列高介电复合材料,并用阻抗分析仪对复合材料的介电性能进行了分析,研究填料形状对聚合物复合材料介电性能的影响。结果表明:随着钛酸钡填料体积分数的增加,复合材料的介电常数均明显增加,同时介质损耗也保持在较低水平。当电场频率为1 kHz、填料体积分数为40%时,钛酸钡纳米棒/PVDF的介电常数在3个系列复合材料中最高,达到24.1。  相似文献   

4.
为研究氮化硼(BN)/环氧树脂复合材料的介电特性,在环氧树脂中分别添加不同质量分数的微米BN、未处理纳米BN和表面处理纳米BN制备BN/环氧树脂复合材料,并对其进行微观分析、介电频谱和介电温谱实验,研究BN质量分数、BN粒径和偶联剂表面处理对环氧树脂复合材料介电特性的影响。结果表明:复合材料的介电常数、介质损耗和电导率比纯环氧树脂有所降低;未处理纳米BN/环氧树脂复合材料和微米BN/环氧树脂复合材料的介电常数随BN质量分数的增加而减小;表面处理纳米BN/环氧树脂复合材料的介电常数随BN质量分数的增加而增大;纯环氧树脂和BN/环氧树脂复合材料的介电常数在10~110℃随温度升高呈上升趋势;纯环氧树脂和BN/环氧树脂复合材料的介质损耗在50~110℃随温度升高而增加,且增加幅度较大。  相似文献   

5.
采用多巴胺盐酸盐对氮化硼(BN)进行表面改性,然后在BN表面沉积银纳米粒子,得到复合填料Ag@BN。以Ag@BN填充环氧树脂制备复合材料,研究填料改性、含量对复合材料导热性能、介电性能的影响。结果表明:改性后的BN微粒能均匀地分散在环氧树脂体系中,当Ag@BN质量分数为50%时,Ag@BN/EP复合材料的热导率达到1.321 W/(m·K),较纯环氧树脂材料提高了275%,同时1 kHz下复合材料的介电常数提高至10.8,介质损耗因数维持在0.5以下。  相似文献   

6.
分别采用氮化硼(BN)、多巴胺改性BN(BN@PDA)、氮化硼与碳纳米管(CNTs)复配作为导热填料填充环氧树脂,制备了一系列导热复合材料。研究了填料种类、含量对复合材料导热性能、介电性能等的影响。结果表明:经多巴胺改性的BN微粒能均匀分散在环氧树脂体系中,当BN@PDA的质量分数为50%时,BN@PDA/EP复合材料的热导率达到1.232 W/(m·K),较纯环氧树脂的热导率提高了250%。在相同的BN@PDA含量下,采用BN@PDA/CNTs复配填料时可以制备得到高导热高介电的复合材料,热导率提高至2.147 W/(m·K),同时1 kHz下的介电常数提高至51.881,介质损耗因数仅为0.043。  相似文献   

7.
在BN/环氧树脂混合料的固化过程中施加不同直流电场制备了纳米BN取向程度不同的环氧复合材料,研究不同电场强度对BN纳米片取向程度的影响,同时探讨BN纳米片取向程度对环氧复合材料热导率和电性能的影响。结果表明:随着直流电场强度的增大,BN纳米片的取向与电场方向更相近,环氧复合材料的热导率得到提升,介电常数和电导率增大。通过调控BN纳米片的分布取向,实现了环氧复合材料导热性能和绝缘性能的协同提升。  相似文献   

8.
高介电常数的聚合物基纳米复合电介质材料   总被引:8,自引:0,他引:8  
高介电常数的聚合物基电介质材料无论是在电力工程,还是在微电子行业都具有十分重要的作用。研究中主要以聚偏氟乙烯(PVDF)为基体,以纳米和微米尺度的高介电常数的铁电陶瓷钛酸钡(BT)的前驱体粉末为功能添加组分,采用特殊的工艺制备了高介电常数的聚合物基纳米功能电介质复合材料。研究了制备工艺、添加物含量、以及微米/纳米BT的体积比等因素对复合电介质材料介电性能的影响。发现在无水乙醇中,通过纳米BT与PVDF颗粒之间强烈的吸附作用以及热模压工艺,可以制备高度分散性的BT/PVDF纳米复合材料。同时通过合理的组合微米/纳米BT的体积比,在BT同样的体积含量时,微米/纳米BT的共混物对复合材料介电性能的提高有明显协同效应。利用该效应可以制备介电常数高的聚合物基电介质材料。  相似文献   

9.
热固性环氧树脂因具有优异的导热性能与绝缘性能在电工装备领域得到广泛应用,由于其具有稳定的三维网络结构和不溶性,回收再利用存在挑战性。本文将不同质量分数的氮化硼(BN)加入到环氧(EP)/4-甲基六氢苯酐降解体系中,制备出高导热、高绝缘、可降解型BN/EP复合材料,并对BN/EP复合材料的导热性能、介电性能以及可降解性能进行研究。结果表明:以2,4,6-三(二甲氨基甲基)苯酚作为催化剂,在乙二醇作用下该BN/EP复合材料可在200℃下实现常压降解。BN质量分数为15%的BN/EP复合材料热导率为0.335 W/(m·K),比纯EP树脂提高了34%;交流电气强度为101.7 kV/mm,比纯EP树脂提高了13%。BN/EP复合材料可经酯交换降解得到EP降解产物(EDP),与EDP复合后,BN/EP复合材料的导热性能和电气强度基本保持不变。  相似文献   

10.
为了研究中频变压器用环氧树脂复合材料的导热和电气特性,本文选取高导热纳米氮化硼(BN)颗粒作为填料,利用盐酸多巴胺对其进行表面修饰,采用溶液法制备了环氧树脂/纳米BN复合材料试样(BN质量分数分别为1%、2%和5%),通过扫描电子显微镜对试样的微观形貌进行分析,测试了试样的热导率、体积电导率、中频击穿场强和表面电位衰减特性.结果表明:纳米BN的添加提高了环氧树脂的热导率;1 wt%和2 wt%纳米BN的添加降低了环氧树脂的电导率和载流子迁移率;随着电压频率的升高,试样的击穿场强降低;随着纳米BN浓度的增加,击穿场强呈现出先升高后降低的趋势;纳米BN能够缓解环氧树脂击穿场强随频率升高的影响,降低环氧树脂的表面电位衰减速度.上述结果表明,适量添加1 wt%和2 wt%的纳米BN能够提高中频变压器用环氧树脂复合材料的导热和电气性能.  相似文献   

11.
采用微米和纳米氮化硼(BN)为填料,制备了微纳掺杂环氧/BN复合绝缘材料,并对BN掺杂总量一定时,环氧/BN复合绝缘热导率和击穿特性随纳米BN掺杂量的变化进行研究.结果表明:当控制BN掺杂总质量分数为20%时,随着纳米BN含量的增加,复合绝缘的热导率略有下降,工频电气强度先上升后下降,厚度为0.2 mm的试样在8 kV、25 kHz高频双极性方波电压下的耐压时间缩短.纯微米BN掺杂的环氧复合材料热导率最大(0.83 W/(m·K)),且在高频双极性方波电压下的耐压时间最长(193 s),分别比纯环氧树脂提高了277%和408%;当纳米BN的质量分数为1%时,环氧复合绝缘的工频电气强度最高,为131 kV/mm,比纯环氧树脂提高了27%.因此,对于微/纳米共掺杂环氧复合体系而言,纳米颗粒的加入主要有助于提高复合材料的工频电气强度,但会使复合材料的热导率下降,缩短其在高频双极性方波电压下的耐压时间.  相似文献   

12.
聚乙烯是一种重要的绝缘材料,但较低的热导率限制了其进一步应用。向聚乙烯基体中添加高导热无机颗粒可有效提高复合材料整体的热导率,同时会对其耐电弧性和介电性能产生影响。鉴于此,分别以微米氮化硼和微纳米混合氮化硼颗粒作为填料,制备了不同填料质量分数的两类聚乙烯/氮化硼复合材料。除了对各复合试样的热导率进行测量,还通过高压电弧起痕实验分析了各试样热导率对其耐电弧性的影响,最后对各试样的相对介电常数和交流击穿强度进行了评估。结果表明:当氮化硼填料的质量分数由0增加至40%,复合试样的热导率不断增大,耐电弧性随之增强。但是基体中填料质量分数较高时(20%),复合试样的相对介电常数明显增大、交流击穿强度显著下降。此外,基体中填料的质量分数相同时,微纳米混合氮化硼颗粒填充的复合试样具有更优异的导热性能、耐电弧性和介电性能。  相似文献   

13.
采用十六烷基三甲基溴化铵(CTAB)改性氮化硼(BN),以此微粒为导热填料制备了环氧树脂(EP)/改性BN导热绝缘复合材料。研究了改性BN含量对复合材料导热性能、电绝缘性能及热稳定性能的影响。结果表明:改性BN能够均匀分散于环氧树脂复合材料中;随着改性BN的加入,复合材料的热导率逐渐上升,体积电阻率略有下降,当改性BN的含量为14.6%时,复合材料的热导率达到0.62 W/(m·K),较纯环氧树脂的热导率提高了169.6%,且复合材料仍保持优异的绝缘性能;随着BN含量的增加,复合材料的热分解温度呈现先升高后降低的变化趋势,当BN的含量为10.2%时,复合材料失重10%时的热分解温度(T10)上升到最高值376.4℃,较纯环氧树脂提高了18℃。  相似文献   

14.
导热高分子复合材料基体和填料形成的界面会影响复合材料整体的导热性能.然而受到传统测试技术的限制,很难从微观角度更深入地研究界面导热机理.本文利用扫描热显微镜(SThM)研究了氮化硼(BN)/低密度聚乙烯(LDPE)复合材料的界面导热机制,对BN/LDPE复合材料的界面热学性质进行了定量分析,并通过有限元仿真模拟了SThM的测试过程,揭示了无机-有机界面处的界面热传导过程.结果表明:随着BN颗粒含量的增加,复合材料的热导率也随之提高.当BN的质量分数达到20%时,复合材料的热导率提高了约22%.采用SThM得到了微纳尺度样品形貌和反映热学性质的电压分布图像,发现BN/LDPE复合材料的热导界面宽度为150~200 nm.在两个BN颗粒相互接触的地方,显示高导热区间增大,热导界面宽度变化较小.通过测试标样获得了热导率与输出电压平方的拟合关系曲线,并计算得到BN/LDPE复合材料的界面热导率为0.33~39.81 W/(m·K).仿真结果表明探针针尖能够区分填料、界面以及基体,复合材料的导热性能随着界面宽度和热导率的增大而提高.  相似文献   

15.
采用溶胶-凝胶法制备CaCu_3Ti_4O_(12)(CCTO)前驱粉体,然后与聚偏氟乙烯(PVDF)进行复合,制备了CCTO/PVDF复合材料。研究了在不同煅烧温度和不同含量CCTO前驱粉体条件下CCTO/PVDF复合材料的介电性能与微观结构。结果表明:CCTO前驱粉体的晶粒尺寸随着煅烧温度的升高而逐渐增大,并且在各个煅烧温度下CCTO前驱粉体的粒径分布较宽。随着煅烧温度的升高,CCTO/PVDF复合材料的介电常数减小。CCTO/PVDF复合材料的介质损耗也随煅烧温度的升高呈现下降趋势,这可能是由前驱粉体自身的损耗造成的。CCTO/PVDF复合材料的介电常数和介质损耗均随CCTO前驱粉体含量的增加而增大。  相似文献   

16.
相比其他无机导热绝缘填料,氮化硼(BN)具有极高的面内热导率、高绝缘电阻和高击穿强度等,此外,还具有和树脂最为接近的低介电常数和介质损耗等优势。本文综述了近年来微、纳米BN粒子填充的导热聚合物的研究进展,重点探讨了不同成型加工方式及混杂BN对在基体内构筑三维BN导热粒子通路的影响,以及不同表面改性对复合材料体系热导率的影响。相比微米BN粒子,BN纳米管及纳米片在相对较低用量下可同时有效改善聚合物的热导率、绝缘电阻及击穿强度,为解决当前导热绝缘聚合物面临的高导热与高电气强度之间的矛盾提供了最佳解决方案。制备和发展具有高绝缘电阻及良好力学、加工性能的导热纳米BN/聚合物是导热绝缘复合材料未来的重点研究和发展方向。  相似文献   

17.
姚彤  边万聪  杨颖 《高电压技术》2021,47(1):251-259
环氧树脂(epoxy resin,EP)以其粘附力强、绝缘性能好等优点,在电气领域中得到广泛应用.但环氧树脂的低热导率限制其在器件中的使用,尤其在高频条件下.文中通过多巴胺改性微米氮化硼和纳米氧化铝,将制备的微纳米二元填料填充环氧树脂,研究环氧树脂复合材料的导热性能和电气绝缘性能.结果表明,质量分数22.5%BN和7....  相似文献   

18.
以端基为氨基、羧基和羟基的表面改性氮化硼(BN)和未经表面修饰的BN纳米片为填料,通过原位聚合法制备了改性BN/聚酰亚胺(PI)复合材料,研究了氨基改性BN(BN-NH2)、羧基改性BN(BN-COOH)、羟基改性BN(BNOH)和BN对不同温度下复合材料导热特性的影响。结果表明:复合材料的热扩散系数随着BN-NH2质量分数的增加而增大,随BN-COOH和BN-OH质量分数的增加先增大后减小,且均在质量分数为2%时达到最大值。在200℃时,BN-NH2/PI的热扩散系数在填料质量分数为5%时达到最大值,BN-COOH/PI和BN-OH/PI则都在填料质量分数为2%时热扩散系数达到最大值,其中BN-COOH/PI获得最高的热扩散系数。因此,氨基表面改性BN有利于BN/PI复合材料在高填充量下获得更高的热扩散系数,而要获得最高的热扩散系数,羧基改性BN则是最佳选择。  相似文献   

19.
将偶联剂改性的纳米BN添加到环氧树脂中,制备了环氧树脂/BN纳米复合材料,并研究了纳米BN含量对纳米复合材料热性能、力学性能及电性能的影响。结果表明:随着BN添加量的增加,复合材料的热导率提高,当BN添加量为15%时,热导率为0.301 W/(m.K),是纯环氧树脂热导率的1.394倍。同时复合材料的热稳定性有所提高,当添加量为10%时,热分解温度提高了6.88℃。随着BN添加量的增加,复合材料的冲击强度和介电强度呈先升高后降低的趋势,当BN含量分别为7%和3%时,冲击强度和介电强度达到最大值15.60kJ/m2和28.94 MV/m,分别是纯环氧树脂的1.324倍和1.43倍,表明纳米BN的加入可以提高环氧树脂的综合性能。  相似文献   

20.
随着电子、信息和电力工业的快速发展,高储能密度介质材料受到了越来越多的关注。为制备高储能密度的电容器用介质材料,研究以溶剂共混法(DMF作为溶剂)获得Al/BT/PVDF和Ag/BT/PVDF三元复合材料,并对制成的三元复合材料的相对介电常数、击穿场强和储能密度进行测试分析,测试结果表明:复合材料的介电常数与混入金属前相比变化不大;当铝含量为2.0%,BT含量为7.5%时,复合材料储能密度达到了2.0 J/cm~3,提高到纯PVDF的5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号