共查询到19条相似文献,搜索用时 109 毫秒
1.
介绍了茂名炼油化工股份公司2.0Mt/a渣油加氢脱硫装置两年的运行情况,结果表明,采用我国自己的渣油加氢处理技术,自行设计、制造和安装的渣油加氢脱硫装置设计合理、设备选配适当,催化剂性能优良、活性稳定,运转周期超过设计值一倍。 相似文献
2.
3.
4.
介绍了茂名炼油化工股份公司 2 .0Mt/a渣油加氢脱硫装置两年的运行情况 ,结果表明 ,采用我国自己的渣油加氢处理技术 ,自行设计、制造和安装的渣油加氢脱硫装置设计合理、设备选配适当 ,催化剂性能优良、活性稳定 ,运转周期超过设计值一倍。 相似文献
5.
加氢渣油作重油催化裂化装置进料工业应用 总被引:3,自引:0,他引:3
为适应加工进口含硫原油的需要 ,茂名炼油化工股份有限公司先后建成了 1.2Mt/a重油催化裂化装置和 2Mt/a渣油加氢装置 ,采用了渣油加氢 催化裂化联合工艺路线。工业应用表明 ,加氢渣油硫含量较低 ,饱和烃含量较高 ,尽管密度、粘度和重金属含量相对较高 ,但仍不失为是一种较好的催化裂化原料。催化裂化装置加工加氢渣油后汽油收率提高了 2 .6 7个百分点 ,干气收率下降 1.2 9个百分点。不足之处是 ,柴油收率稍有降低 ,油浆产率略有增加。由于加氢渣油含有较多难裂解的重组分 ,在加工时宜采用较高的反应深度和重油裂解能力较强的催化剂 ,以充分满足其裂解要求 相似文献
6.
某炼油厂渣油加氢装置两台高压进料泵电机出现超电流和流量降低的现象,泵的流量最低至60 t/h。分析了原料密度、黏度对泵性能的影响,认为原料酸值高(折算原料中环烷酸的酸值高达0.66 mgKOH/g)是造成高压进料泵内件腐蚀的主要原因。从泵出口的部分介质通过腐蚀间隙增大的叶轮口环等部件回流到泵的入口,导致泵内循环量增加,泵出口总流量下降进而导致电机超电流。通过控制原料的总酸值不超过0.3 mgKOH/g和原料储存按照一定比例掺兑加工等措施,有效地缓解了此类现象的发生。 相似文献
7.
8.
常压渣油加氢脱硫或减压渣油加氢脱硫与渣油催化裂化的组合工艺,提出了一个竞争力的加工燃料油的路线。在RFCC装置前采用RDS或VRDS,可以使炼油厂加工的原油有更宽的选择范围、同时能经济地将渣油转化成动作用油田。 相似文献
9.
中国石化海南炼油化工有限公司(简称海南炼化)固定床渣油加氢装置具有空速大和第一反应器高径比较大的特点,因此对该装置进行催化剂级配装填的难度较高,需要平衡好催化剂活性、催化剂活性稳定性和反应器压降之间的关系,从而获得最优的反应效果。为此,海南炼化历经多个运转周期对不同催化剂专利商的渣油加氢催化剂进行比较。各催化剂的工业应用统计结果表明,中国石化石油化工科学研究院(简称石科院)开发的RHT系列渣油催化剂的综合性能优于国内外参比催化剂。此外,海南炼化从装置改造和运行优化等多方面入手,逐步实现了该装置的高效运行。 相似文献
10.
我国蜡油及渣油深加工应大力发展加氢型装置 总被引:8,自引:3,他引:8
分析了我国蜡油及渣油深加工装置的构成、汽柴油质量及炼油厂加工过程中烟气排放的现状;可持续发展对汽柴油质量和生产过程清洁化的要求;原油资源量、产量的变化趋势和未来的供需矛盾。提出了我国蜡油及渣油深加工要大力发展加氢型装置,严格控制脱碳型装置建设的建议。为降低加氢型装置的投资及运行费用,提高其经济性,就开发推广新技术、新工艺提出了几条途径:积极推广和改进蜡油中压加氢裂化技术;不断改进蜡油高压加氢裂化技术;开发加氢裂化和加氢处理(或精制)组合工艺;开发蜡油物理法预精制与加氢裂化、渣油物理法预精制与加氢处理组合工艺;开发适宜的新型催化材料,不断改进催化剂性能;开发蜡油及渣油悬浮床加氢裂化工艺技术;开发廉价氢源技术;继续推进蜡油及渣油加氢型装置装备国产化。 相似文献
11.
减压渣油加氢处理装置原料优化的研究 总被引:1,自引:0,他引:1
在中型固定床渣油加氢处理试验装置上研究了减压渣油加氢处理过程中,几种稀释油对减压渣油加氧效果的影响。对比研究表明,润滑油糠醛精制装置抽出油、丙烷脱沥青装置脱沥青油、减压渣油加氢生成油350℃以上馏分均可作为减压渣油加氢处理过程中所需稀释油的替代品种,尤其是后两种油品作稀释油对生产用户更具实际意义。 相似文献
12.
延长渣油加氢装置的运转周期,有利于提高催化剂的利用率,提高渣油加氢-催化裂化联合装置的经济效益。从原料性质影响入手,分析了如何最大限度延长渣油加氢装置运转周期。通过优化控制原料性质并采用中国石化石油化工科学研究院开发的RHT系列第三代催化剂,实现了装置的长周期稳定运行。 相似文献
13.
以中东高硫原油的常压渣油为原料,在反应器入口氢分压为14.5 MPa,氢油体积比为700,液时体积空速分别为0.20,0.30,0.40 h-1,反应温度分别为385 ℃和390 ℃的条件下开展中型加氢试验,结果表明,固定其他工艺条件不变时,降低空速可以提高产品质量或降低反应温度,从而延缓催化剂失活,延长运转周期。因此提出了增设反应器的措施,并在2套工业固定床渣油加氢装置上进行相应的改造实践,结果表明:A炼油厂在原固定床第一反应器前增设一台上流式反应器,装置总处理量由0.84 Mt/a增加到1.5 Mt/a,第九运行周期(RUN-9)加氢渣油硫质量分数低于0.5%,氮质量分数为0.2%~0.3%,金属(Ni+V)质量分数低于15 μg/g,残炭为3%~5%,装置运转周期由240 d延长至480 d;B炼油厂在原固定床第二反应器后增设一台固定床反应器,装置体积空速由0.4 h-1降低至0.25 h-1,与改造前RUN-9相比、改造后第十二运行周期(RUN-12)的反应脱硫率略有增加,其降残炭率、脱金属率和脱氮率显著提高,装置的运转周期由335 d延长至518 d。 相似文献
14.
15.
对中国石化扬子石油化工有限公司2.0 Mt/a渣油加氢装置第一周期的运行情况及存在的问题进行了分析,并提出处理措施。运行结果表明:在处理量为设计负荷的104%的情况下,渣油加氢装置的各项技术指标均满足设计要求;FZC系列催化剂具有较高的脱杂质活性和加氢活性,加氢渣油的密度、硫含量、氮含量、残炭和金属含量均达到或优于设计值,是优质的催化裂化原料。针对装置原料劣质化、热高压分离器气体夹带重烃、循环氢脱硫塔发泡及高压换热器结垢等情况,采取相应的对策,取得了较好的效果,初步解决了装置高苛刻度运行过程中存在的问题。 相似文献
16.
大庆蜡油掺渣油催化裂解技术的工业应用 总被引:6,自引:2,他引:6
通过对工艺、催化剂的装置等方面的改进,在大庆石油管理局油田化学助剂厂催化裂解装置上首次成功地进行了掺渣油原料催化裂解工业试验,扩大了催化裂解技术的适应范围,开辟了一条用蜡油掺渣油作原料生产丙烯的新途径。 相似文献
17.
加氢渣油催化裂化汽油诱导期短的原因分析及对策 总被引:3,自引:0,他引:3
通过对催化裂化汽油组成、诱导期等性质指标的跟踪,分析了影响加氢渣油催化裂化汽油诱导期的主要因素。结果表明,二烯值大、酚含量低是加氢渣油催化裂化汽油诱导期短的主要原因。加氢渣油具有重组分裂解性能差、重金属含量高等特性,其催化裂化反应温度高、平衡催化剂沉积重金属(镍+钒)含量高,导致热裂化反应增多、氢转移反应减少,致使汽油中共轭二烯烃含量高。原料中氧含量低可导致汽油中酚含量低。通过采取优化催化裂化原料、优化操作条件、优化汽油调合及添加抗氧剂等措施可保证汽油诱导期合格。 相似文献
18.
随着原油性质的劣化以及原油加工量的不断提高。洛阳分公司自投产以来一直采用的不开减压蒸馏装置。常压重油直接作为渣油催化裂化装置原料的生产方案已经不能适应生产需要。2002年12月减压蒸馏和溶剂脱沥青装置开工,催化裂化装置掺炼减压蜡油和脱沥青油。原料性质明显改善。催化裂化装置的生焦率比减压蒸馏装置未开工期间的两次标定分别降低了2.76和3.44个百分点。轻质油收率分别增加了7.18和5.98个百分点,催化剂单耗分别降低了0.43和0.58kg/t,装置单位能耗分别降低约l084和l246MJ/t,经济效益显著。 相似文献
19.
原料的反应特性、反应器入口分配效果、催化剂体系及其级配技术会影响RHT渣油加氢装置的高效运行。原料的反应特性影响催化剂的杂原子脱除率和残炭前身物加氢转化性能,还会影响催化剂的失活机制和装置运转周期;反应器入口分配效果不佳会导致较高的床层径向温差;催化剂级配不合理会影响整体催化剂的活性和稳定性;渣油的分子大、黏度高,在催化剂中传质阻力大,扩散速度慢。针对这些影响RHT装置高效运行的主要因素,中国石化石油化工科学研究院结合基础研究和应用研究的结果,开发了相应的RHT系列技术,包括量体裁衣的RHT催化剂及级配技术、原油脱钙技术、反应器物流高效分配技术、可切除和可轮换的保护反应器工艺以及RICP系列工艺。根据RHT装置加工原料的特点以及全厂总流程的安排,针对不同的RHT装置提出了不同的整体解决方案。3套RHT装置的工业应用结果表明,实施整体解决方案后,RHT装置均实现了高效运行。 相似文献