首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental data on the kinetics of methane hydrate formation in aqueous electrolyte solutions are reported. The experiments were carried out in a semi-batch stirred tank reactor in three NaCl and two KCl solutions as well as in a solution containing a mixture of NaCl and KCl at three different nominal temperatures from 270 to 274 K and at pressures ranging from 3.78 to 7.08 MPa. The kinetic model developed by Englezos et al. (1987a) was adapted to predict the growth of hydrates. The model is based on the crystallisation theory coupled with the two-film theory for gas absorption in the liquid phase. The kinetic rate constant which appears in the model was that obtained earlier for methane hydrate formation in pure water. The effect of the electrolytes was taken into account through the computation of the three-phase equilibrium conditions and the corresponding fugacities. Overall, the model predictions match the experimental data very well with the largest prediction error being less than 10%.  相似文献   

2.
《Chemical engineering science》1987,42(11):2647-2658
An intrinsic kinetic model with only one adjustable parameter is proposed for the formation of methane and ethane gas hydrates. Experimental formation data were obtained in a semi-batch stirred tank reactor. The experiments were conducted at four temperatures from 274 to 282 K and at pressures ranging from 0.636 to 8.903 MPa. The kinetic model is based on the crystallization theory, while the two-film theory model is adopted for the interfacial mass transfer. Experiments were performed at various stirring rates to define the kinetic regime. The study reveals that the formation rate is proportional to the difference in the fugacity of the dissolved gas and the three-phase equilibrium fugacity at the experimental temperature. This difference defines the driving force which incorporates the pressure effects. The gas consumption rate is also proportional to the second moment of the particle size distribution. The rate constants indicate a very weak temperature dependence.  相似文献   

3.
The new experimental apparatus capable of observing the clathrate hydrate formation kinetics was developed in this study. Experimental data on the kinetics of carbon dioxide hydrate formation were carefully measured. The experiments were carried out in a semi-batch stirred tank reactor with stirring rate of 500 rpm at three different temperatures between 275.2 and 279.2 K and at pressures ranging from 2.0 to 3.5 MPa. The kinetic model was adopted to predict the growth of hydrates with only one adjustable parameter which represented the rate constant for the hydrate particle growth. The model was based on the crystallization theory coupled with the two-film theory for gas absorption into the liquid phase. The model predictions matched the experimental data very well with the largest deviation of 7.18%, which is within experimental error range. This study is the first for the kinetic data of carbon dioxide hydrate formation and important in developing carbon dioxide fixation process using clathrate hydrate phenomenon.  相似文献   

4.
Experimental data on the kinetics of carbon dioxide hydrate formation and its solubility in distilled water are reported. The experiments were carried out in a semi-batch stirred tank reactor at nominal temperatures of 274, 276 and 278 K and at pressure ranging from 1.59 to 2.79 MPa for the kinetics experiments and at pressure ranging from 0.89 to 2.09 MPa for the solubility experiments. A minor inconsistency in the kinetic model developed by Englezos et al. (1987a) was removed and the model was modified to determine the intrinsic kinetic rate constant for carbon dioxide hydrate formation. The same model was also used to re-determine the intrinsic kinetic rate constant for methane hydrate formation. The model is based on the crystallization theory coupled with the two-film theory for gas absorption in the liquid phase. The Henry's constant (H) and apparent dissolution rate constant (KLa) required in the model were determined using the experimental solubility data. The kinetic model describes the experimental data very well. The kinetic rate constant obtained for the carbon dioxide hydrate formation was found to be higher than that for methane.  相似文献   

5.
甲烷水合物分解动力学   总被引:7,自引:1,他引:6       下载免费PDF全文
根据两种测量水合物分解动力学的方法———恒定分解压力法及压力变化法 ,采用气体水合物静力学实验装置测定了甲烷水合物的分解动力学数据 .由建立的分解动力学模型计算了甲烷水合物的分解速率 ,较好地拟合了所测得的实验数据 .实验数据验证了分解速率和水合物平衡压力下的逸度与实验压力下的逸度之差有关 ,计算的分解活化能为 73.3kJ·mol-1(甲烷 ) .  相似文献   

6.
The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatures from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated from the C2+ fraction by forming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the water-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data of gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.  相似文献   

7.
In this study, the dissociation of isolated carbon dioxide hydrate particles of sizes in the range 0.25–2.5 mm was investigated. It was found that below the ice melting point, the hydrates dissociated into supercooled water (metastable liquid) and gas. The formation of the liquid phase during CO2 hydrate dissociation was visually observed, and the pressures of the hydrate dissociation into supercooled water and gas were measured in the temperature range 249–273 K. These pressures agreed well with the calculated data for the supercooled water–hydrate–gas metastable equilibrium (Istomin et al., 2006). In the PT area on the phase diagram bounded by the ice–hydrate–gas equilibrium curve and the supercooled water–hydrate–gas metastable equilibrium curve, hydrates could exist for a long time because the metastable phase and their stability are not connected to the self-preservation effect. The growth of the metastable CO2 hydrate film on the surface of supercooled water droplets formed during the hydrate dissociation was observed at pressure above the three-phase supercooled water–hydrate–gas metastable equilibrium pressure but still below the three-phase ice–hydrate–gas equilibrium pressure. It was found that the growth rate of the metastable CO2 hydrate film was higher by a factor of 25 and 50 than that for methane hydrate and propane hydrate, respectively.  相似文献   

8.
The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.  相似文献   

9.
This article compares the effects of using various types of equations of state (Peng-Robinson, PR; Soave-Redlich-Kwong, SRK; Esmaeilzadeh-Roshanfekr, ER; Patel-Teja, PT; and Valderrama-Patel-Teja, VPT) on the calculated driving force and rate of gas consumption based on the Kashchiev model in simple and double-gas hydrate formation for methane, ethane, and their mixtures with 1130 experimental published data points with or without the presence of kinetic inhibitors at various pressures and temperatures. For the prediction of gas consumption rate in double-gas hydrate formation, the rate equation based on the Kashchiev model for simple gas hydrate formation was developed using the calculation of gas mole fraction in hydrate phase and then prediction of gas hydrate formation rate for each component in gaseous mixture. The total average absolute deviation was found to be 8.72%, 10.34%, 8.84%, 11.04%, and 14.16% for the PR, ER, SRK, VPT, and PT equations of state for calculating gas consumption in simple and double hydrate formation, respectively.  相似文献   

10.
针对多组分气体(天然气)-水-表面活性剂体系在螺旋内槽管内的水合物生成过程,首先采用CFD方法结合群体平衡模型(PBM),基于溶质渗透模型和Kolmogorov各向同性湍流理论对螺旋内槽管内气液传质系数进行了模拟;其次基于Kashchiev和Firoozabadi的经典水合物成核和生长理论,将其体系从单组分-水系统扩展到多组分气体(天然气-水-十二烷基硫酸钠)系统,同时结合经典结晶理论利用传质系数对水合物生长模型进行了修正,建立了适用于螺旋内槽管流动体系内天然气水合物生成动力学模型。通过模拟计算,获得不同水合物生产条件下天然气在水中的平均传质系数;进而利用Microsoft Visual C++编程计算得到不同条件下水合物生成动力学数据,在考察范围内,天然气水合物的成核速率随着反应体系有效表面能的增大而锐减,而水合物生成驱动力和生长速率未受影响,同时水合物生长速率随着流速和反应压力的增大及温度的降低而增大,成核速率随着压力的增大和温度的降低而增大。  相似文献   

11.
Hydrate formation kinetic modelling studies reported so far mainly concentrates on pure water-gas systems in stirred-tank batch environments. This work proposes a model for gas hydrate formation kinetics of a hydrate promoter-water-natural gas system in a semi-batch reactor assuming steady-state, isothermal and isobaric conditions. The hydrate formation kinetics was modelled after extending the recent method proposed by Kashchiev and Firoozabadi (J. Crystral Growth 241 (2002a) 220; J. Crystal Growth 243 (2002b) 476; J. Crystal Growth 250 (2003) 499) for a single component gas-water system to a multi-component gas-water-additive system. The extended Kashchiev and Firoozabadi model was applied for a semi-batch spray reactor here for the first time. The hydrate formation experiments were carried out in a pilot plant spray reactor at three different pressure-temperature regimes to determine the actual hydrate formation kinetics in the spray reactor. The experiment results were then used to finetune the adjustable parameters to facilitate accurate model predictions.  相似文献   

12.
Study on the kinetics of hydrate formation in a bubble column   总被引:1,自引:0,他引:1  
Gas hydrate formation experiments were performed using methane in the presence of tetrahydrofuran (THF) in aqueous solution in a transparent bubble column in which a single pipe or a sintered plate was used to produce bubbles. The mole fraction of THF in aqueous solution was fixed at 6%. The hydrate formation kinetic behaviors on the surface of the rising bubble, the mechanical stability of hydrate shell formed on the surface of the bubble, the interactions among the bubbles with hydrate shell were observed and investigated morphologically. The rise velocities of individual bubbles with hydrate shells of different thickness and the consumption rates of methane gas were measured. A kinetic model was developed to correlate the experimentally measured gas consumption rate data. It was found that the hydrate formation rate on the surface of the moving bubble was high, but the formed hydrate shell was not very easy to be broken up. The bubbles with hydrate shells tended to agglomerate rather than merge into bigger bubble. This kind of characteristic of hydrate shell hindered the further formation of hydrate and led to the lower consumption rate of methane. The consumption rate of methane was found to increase with the decrease of temperature or increase of pressure. The increase of gas flux led to a linear increase in consumption rate of methane. It was demonstrated that the developed kinetic model could be used to correlate the consumption rate satisfyingly.  相似文献   

13.
The diffusion theory of the formation of gas hydrate from ice powder is stated. The theory takes into account that a gas hydrate has a pore structure that can change during formation of gas hydrate. The parameters of the theoretical model that are responsible for the kinetics of methane hydrate formation are estimated using a comparison between experimental and calculated data.  相似文献   

14.
In order to improve the predicting ability of hydrate formation condition for sour gas contained systems, the dissolution of gas in water and hydrolytic reaction equilibrium existing in aqueous phase was taken into account and two concepts, i.e., the true compositions and apparent compositions of aqueous phase, were introduced. And then the approach to determine the true compositions including ionic components was given and the modified method to calculate the component fugacity of aqueous phase was developed by introducing Debye-Huckel electrostatic contribution term. The new method coupled with Chen-Guo model was successfully used to predict the thermodynamics property of hydrates for carbon dioxide and hydrogen sulfide pure gases, binary, and ternary sour gas mixtures in pure water systems. The calculation precision is superior to that of original Chen-Guo model and CSMHYD hydrate software.  相似文献   

15.
Accurate knowledge of the water content of natural gases is an important factor to estimate the gas hydrate, ice, and condensed water formation conditions. However, the experimental data regarding the water content of gases in equilibrium with the gas hydrate, ice, or liquid water (near gas hydrate or ice formation region) are limited. This is partly because of the fact that concentration of water in the gaseous phase in equilibrium with gas hydrate, ice or liquid water (near gas hydrate or ice formation region) is very low considering that reaching the equilibrium conditions near and inside gas hydrate or ice formation region is time consuming process. The measurement difficulties may consequently result in generating unreliable experimental data. This work aims at performing a thermodynamic consistency test based on area approach to study the reliability of some experimental data reported in the literature on the water content of methane (the main component of natural gases) in equilibrium with the gas hydrate, ice, or liquid water (near gas hydrate or ice formation region). A discussion is made on the studied experimental data according to the performed consistency test. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

16.
甲烷水合物在纯水和抑制剂体系中的生成动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
Kinetic data of methane hydrate formation in the presence of pure water,brines with single salt and mixed salts,and aqueous solutions of ethylene glycol(EG) and salt EG were measured.A new kinetic model of hydrate formation for the methane water systems was developed based on a four-step formation mechanism and reaction kinetic approach.The proposed kinetic model predicts the kinetic behavior of methane hydrate formation in pure water with good accuracy.The feasibility of extending the kenetic model of salt(s) and EG containing systems was explored.  相似文献   

17.
表面活性剂在瓦斯水合物生成过程中的热力学作用   总被引:1,自引:0,他引:1       下载免费PDF全文
吴强  何学秋  张保勇  王永敬 《化工学报》2006,57(12):2793-2797
在实验研究基础上,结合表面活性剂水溶液中瓦斯水合物生成微观机理,提出了表面活性剂改变水合物生成热力学条件物理作用假说,认为表面活性剂胶束对溶于其中的气体分子和吸附于其周围的水分子的束缚作用,相当于降低了体系的温度.利用T40(0.001 mol·L-1)、T40(0.002 mol·L-1)、T40/T80(0.001 mol·L-1)分别组成的3种气 液 煤 水合物反应体系实验测定了水合物生成时的相平衡参数,与同样温度和压力条件下相平衡计算值比较,结果表明,表面活性剂的加入有效地改变了水合物生成的热力学条件.例如,在T40/T80(0.001 mol·L-1)实验体系中,当压力为22.67 MPa时,水合物生成相平衡温度为22.6℃,比纯水中提高2.1℃.  相似文献   

18.
Double gas hydrate formation in the presence or absence of kinetic inhibitors in a flow mini‐loop apparatus was investigated. For the prediction of the gas consumption rate during hydrate formation in this system, the rate equation based on the Kashchiev and Firoozabadi model for simple gas hydrate formation in a batch system was developed for double gas hydrate formation in a flow mini‐loop apparatus. To complete the theoretical evaluation of gas hydrate formation through the mini‐loop apparatus in the presence or absence of kinetic hydrate inhibitors (KHI), a laboratory flow mini‐loop apparatus was set up to measure the induction time for hydrate formation and the uptake rate when a gaseous mixture (such as 75 % C1/25 % C3, 25 % C1/75 % C3, 75 % C1/25 % i‐C4, and 25 % C1/75 % i‐C4) is contacted with water containing or not containing dissolved inhibitor under suitable temperature and pressure conditions. In each experiment, a water blend saturated with gas mixture was circulated up to the required pressure. The pressure was maintained at a constant value during the experimental runs by means of a required gas mixture make‐up. The effect of pressure on gas consumption during hydrate formation was investigated in the presence or absence of polyvinylpyrrolidone (PVP) and L ‐tyrosine as kinetic inhibitors at various concentrations. A good agreement was found between the predicted and experimental data in the presence or absence of KHI. The total average absolute deviation percents between the experimental and predicted values of gas consumption were found to be 16.4 and 17.5 % for the double gas hydrate formation in the presence or absence of the kinetic inhibitors, respectively.  相似文献   

19.
Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device. The experimental data for pure CH4 or CO2 + deionized water systems showed good agreement with those in the literatures. This kind of method was then applied to CH4/CO2 + sodium dodecyl sulfate (SDS) aqueous solution, CH4/CO2 + SDS aqueous solution + silica sand, and (CH4 + C2H6 + C3H8) gas mixture + SDS aqueous solution systems, where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions. The feasibility and reliability of the step-heating method, especially for porous media systems and gas mixtures systems were determined. The experimental data for CO2 + silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96 μm. The formation equilibrium pressure was also measured by the reformation of hydrate.  相似文献   

20.
[C8min] BF4 was used in this work to combine with TBAB or THF for the investigation about thermodynamic and kinetic additives on CO2 and CH4/CO2 hydrates. The results show that[C8min] BF4 has the inhibition effect on the equilibrium of hydrate formation. About the kinetic study,[C8min] BF4 could improve the rate of CO2 hydrate formation and increase the gas uptake in hydrate phase. At the same time, the combination of TBAB and[C8min] BF4 could increase the mole friction of CH4 in residual gas comparing with the data in THF solution. CH4 separation efficiency was strongly enhanced. Since that the size of CO2 and CH4 molecules are similar, CH4 and CO2 could form the similar hydrate, so the recovery of CH4 from biogas decreases lightly. The CH4 content in biogas can purified from 67 mol% to 77 mol% after one-stage hydrate formation. In addition, the combination of THF and[C8min] BF4 do not have obvious promoting effect on CH4 separation comparing with the gas separation results in pure THF solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号