首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用二次固相法合成具有层状结构的电子导电材料—LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2-δ)(LNCA),并将其与离子导电材料Sm掺杂CeO_2复合,获得具有电子-离子混合导电性的复合材料.并以此为功能层,构造了无电解质隔膜层燃料电池(Electrolyte Free Manbrane Fuel Cell,EFFC).研究了功能层的厚度以及电子-离子导电材料的比例对电池性能的影响,并阐述了影响机制.该电池在550℃下获得了937 mW·cm~(-2)的功率输出,且具备在更低温度下操作的可行性.  相似文献   

2.
本文主要研究了以Al_2O_3为电解质的新型结构低温固体氧化物燃料电池。分别以三种不同结构的氧化铝(α-Al_2O_3、β-Al_2O_3和含有一定γ相的α-Al_2O_3)为电解质制备了结构为:泡沫镍-Ni_(0.8)Co_(0.15)Al_(0.05)LiO_2(NCAL)/Al_2O_3/NCAL-泡沫镍的SOFC,并在H_2燃料中测试了电化学性能。研究发现三种电池开路电压和最大输出功率密度都有明显差异。α-Al_2O_3、β-Al_2O_3和含有一定γ相的α-Al_2O_3电解质电池在550℃下H_2/air气氛中的开路电压分别为:1.057V、0.415V和0.945V;三种电池的最大功率密度分别为173.44mW·m~(-2)、3.76mW·m~(-2)和99.11mW·m~(-2)。交流阻抗谱结果显示α-Al_2O_3的离子电导率最高,为0.17S·cm~(-1)。通过Ce_(0.9)Gd_(0.1)O_2(GDC)/Al_2O_3双层电解质电池的离子过滤实验发现Al_2O_3电解质中的载流子包含氧离子。对不同结构Al_2O_3粉体材料及其在电池中电化学性能测试前后表面氧元素的结合能的XPS表征结果研究发现:不同结构的Al_2O_3的离子电导率大小跟其表面氧空位浓度有关,氧空位浓度越大,离子电导率越高。Al_2O_3的表面氧空位浓度在氢气通入后也会显著增加。界面氧离子传导应该是这种以氧化铝为电解质的新型结构SOFC的氧离子传导机理。  相似文献   

3.
主要综述了β(β″)-Al_2O_3电解质粉末的两种制备方法:固相反应法和湿化学法,介绍了这两种合成方法的几种制备工艺。同时,综述了β(β″)-Al_2O_3电解质陶瓷在储能电池、热力学研究以及传感器等方面的应用情况。  相似文献   

4.
采用溶胶–凝胶法制备YCr_(0.9)M_(0.1)O_3(M为Cr和Co)两种材料粉体,用共压法在370MPa压强下制成单电池。XRD结果显示1 000℃下煅烧的两种粉体都形成了很好的钙钛矿结构相,无明显杂相生成。电池横断面的SEM图显示电池内部电解质层较为致密,无断裂和分层现象。离子过滤法研究结果证明YC电解质中的载流子应该是氧离子。YCC电解质电池在550℃取得了197.97mW/cm2最大功率密度。对YC粉体材料进行XPS表征发现其表面存在氧空位,且经过燃料电池性能测试后的YC电解质材料表面的氧空位浓度显著增加。Co的掺杂提高了YC粉末的表面氧空位浓度,这应该是YCC电解质电池性能较高的原因。  相似文献   

5.
阳极微结构尤其是表面结构的调控对固体氧化物燃料电池 (SOFC) 的极化与性能具有显著的影响。大气等 离子喷涂 (APS) 和高温烧结是金属支撑 SOFC 阳极功能层最常用的两种制备方法。本文采用 APS 和高温烧结两 种制备方法,在相同的金属支撑体上沉积阳极功能层以获得具有不同阳极 / 电解质界面结构的 SOFC。对两种阳 极功能层的组织结构、表面粗糙度、比表面积和物相构成进行了研究。结果表明,两种方法制备的阳极组织形貌 差别较大,高温烧结的阳极功能层表面具有良好的平整度,而 APS 制备的阳极功能层呈现出典型的层状结构, 表面粗糙度和比表面积较大。从断面形貌中可以看出,高温烧结阳极电池的电解质功能层厚度均一,两种电池阳 极与电解质功能层之间均结合紧密。两种电池的输出性能结果表明,APS 阳极电池具有较高的输出性能和较低的 电极极化阻抗。  相似文献   

6.
利用溶胶-凝胶法制备了La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM)阳极粉体。X射线衍射(XRD)分析结果显示,在1000℃下焙烧4 h处理后,粉体为单一的钙钛矿相结构。应用单向压力成型方法、空气中1450℃下烧结8 h制备了Ce0.8Sm0.2O1.9(SDC)为电解质片,应用丝网印刷方法在SDC电解质两侧分别涂覆La0.7Sr0.3Cr0.5Mn0.5O3-δ阳极和Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC(PSCF-SDC)复合阴极,组成电解质支撑型固体氧化物燃料单电池。扫描电镜(SEM)观察显示,制备的电解质致密,阳极和阴极孔隙大小分布均匀,阳极厚度约为20μm,阴极厚度为10μm。用湿氢气作燃料,在800℃下获得的最大输出功率为232.84 mW/cm2,短路电流为919.84 mA/cm2。为了提高LSCM阳极材料催化活性,阳极中掺入少量SDC构成复合阳极。La0.7Sr0.3Cr0.5Mn0.5O3-δ-10%SDC复合阳极的单电池输出功率明显提高,最大输出功率为340 mW/cm2。  相似文献   

7.
采用柠檬酸硝酸盐法合成出钐掺杂的氧化铈电解质Ce0 8Sm0 2O19(SDC)粉体,XRD结果显示该粉体为单相萤石结构.将粉体干压成型,在1400℃下烧结10 h可得到高致密度电解质.通过烧结实验,分析样品的烧结温度和密度,并测量其热膨胀曲线.以Ce08Sm02O19作为电解质组成单电池,在850℃其最大输出功率密度为106 mW/cm2.  相似文献   

8.
La1-xSrxCr1-yMnyO3-δ阳极材料的固相合成及导电性能研究   总被引:1,自引:1,他引:0  
采用固相法制备固体中温氧化物燃料电池(SOFC)阳极材料La1-xSrxCr1-yMnyO3-δ(LSCM), 用X射线衍射(XRD)分析了LSCM材料中钙钛矿相的形成过程, 直流四探针对合成材料的导电性能进行了研究, 碘量法测定了材料中的非化学计量值. 结果表明: 固相法制备所得到的产物分别在1250和1350 ℃下烧结15 h都能得到单一的钙钛矿相;对LSCM样品导电性能研究表明, 其电导率随温度的升高而增加, 在850 ℃时空气气氛下的电导率可达22.04 S·cm-1;LSCM系列材料的电导率随着氧的非化学计量值的增加而提高. 用丝网印刷方式, 制备以LSCM为阳极, La1-xSrxGa1-yMgyO3-δ(LSGM)为电解质, La1-xSrxCo1-yFeyO3-δ(LSCF)为阴极的单电池, 并对其性能进行测试, 最大功率输出密度约100 mW·cm-2.  相似文献   

9.
以钛粉,硅粉和石墨粉为原料,采用放电等离子烧结技术制备密度为4.14 g/cm3的Ti3SiC2和密度为4.03 g/cm3的0.8 Ti3SiC2+0.2 SiC复合材料,并以此为基础制备Ti/Ti3SiC2/0.8Ti3SiC2+0.2SiC层状材料。通过扫描电镜(SEM)和X射线衍射仪(XRD)分析材料的显微结构与相组成。结果表明:该层状材料的界面结合紧密,没有明显的孔洞、裂纹等缺陷,各层的相组成符合设计要求。经800℃热处理40 h后Ti/Ti3SiC2界面处生成稳定的TiC层,在高温下该层状材料的界面基本稳定。  相似文献   

10.
采用MnCO3或MnO2为锰源,设计了两条工艺路线,并分析了这两种工艺对富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2结构、形貌、振实密度及电化学性能的影响。研究结果表明,两种工艺制备的材料都具有层状结构,二次颗粒都呈球形,球形颗粒的直径都在2~15μm,一次颗粒0.2~1.0μm;但是在两种不同的工艺下,球形颗粒的聚集程度不一,其中以MnO2为锰源,制备的材料的颗粒接触最为紧密,而且其振实密度高,为1.5g·cm-3。以制备出的材料作为电池的正极材料,组装2032扣式电池,在0.1C(20mA·g-1),电压范围2.0~4.8V,测试材料的首次充放电,其中以MnCO3为锰源,制备的材料的首次放电比容量为最高,为262.1mAh·g-1,首次库伦效率为76.8%。在不同倍率(0.2C,0.5C,1.0C和3.0C)下测试电池性能,以MnO2为锰源,3.0C下的放电比容量为183.5mAh·g-1。因此,采用MnO2为锰源制备出的富锂正极材料具有较高的倍率性能。  相似文献   

11.
以Li_2CO_3、Al_2O_3、TiO_2、NH_4H_2PO_4为原料,采用固相烧结法制备锂空气电池固体电解质Li_(1+x)Al_xTi_(2-x)(PO_4)_3(LATP),研究了不同x值、不同烧结温度对电解质性能的影响。通过X射线衍射仪(XRD)、扫描电镜(SEM)和电化学阻抗谱(EIS)对所制备电解质的结构与性能进行表征。结果表明在x值等于0.2时得到纯相的LATP,最佳烧结工艺是350℃保温2 h,600℃保温2 h,1 000℃保温8 h,室温下的电导率为4.89×10~(-5)S/cm。  相似文献   

12.
利用化学镀技术在短炭纤维(short carbon fiber, SCF)表面镀镍,制备镍层包覆的炭纤维(SCF-Ni)。采用湿混法将不同含量的镀镍短炭纤维(SCF-Ni)与铝硅合金粉(Al-Si)均匀混合,用放电等离子烧结技术(SPS)制备镀镍炭纤维增强铝基复合材料(SCF-Ni/Al-Si复合材料)。通过SEM观察炭纤维和复合材料的组织与形貌;用XRD分析复合材料界面物相,探究SCF-Ni质量分数对复合材料微观结构及力学性能的影响。结果表明,随SCF-Ni含量增加,SCF-Ni/Al-Si复合材料密度下降,硬度增加,室温抗拉强度先升高后降低,在SCF-Ni质量分数为9%时达到最大值152 MPa,较Al-Si基体的抗拉强度(90 MPa)提升了68%。  相似文献   

13.
为了提高Ce0.8Sm0.2O1.9(CSO)基氧离子导电材料的离子导电性,用2步化学共沉淀法制备Ce0.8Sm0.2O1.9La9.33 Si6O26(CSO-LSO)氧离子导电复合材料.通过X射线衍射分析材料的物相组成,利用扫描电子显微镜观察材料的微观形貌,利用交流阻抗分析测试材料的离子导电特性.结果表明,经300℃煅烧可得到纯相的CSO粉体,平均晶粒尺寸为9.8 nm.在整个测试温度范围内,CSO-LSO复合材料的氧离子电导率比单相CSO提高了10倍以上;700℃时,CSO-LSO复合材料电导率为0.12 S.cm-1,比CSO的总电导率(0.008 6 S·cm-1)提高约14倍.通过分析得出界面效应是提高复合材料电导率的主要因素.  相似文献   

14.
田春霞 《稀有金属》2002,26(5):397-400
介绍了纳米材料在锂离子电池中的应用及进展情况。主要介绍了在锂离子电池中用作阴极材料的锰钡矿型MaO2纳米材料、聚吡咯包覆尖晶石型LiMn2O4纳米管、聚吡咯/V2O5纳米复合材料,用作阳极材料的碳纳米管、纳米掺杂碳材料、纳米二氧化锡,用作固态电解质的纳米填料修饰聚氧乙烯基复合材料等几种新型纳米化学电源材料的制备、结构、形貌以及电化学性质。  相似文献   

15.
利用放电等离子烧结技术(SPS)制备出相对密度、断裂韧性、弯曲强度分别为99.74%、19.73±0.4MPa·m1/2、1002±12MPa的40vol%Ti/Al2O3复合材料。SEM对复合材料表面形貌观察发现,Ti、Al2O3两相分布均匀,表面无明显气孔存在;断口的SEM和EDS表明,复合材料已形成网络导电结构;复合材料的HREM微观结构分析表明,Al2O3三角晶界处无其它杂质的偏聚,小颗粒的金属Ti富集在Al2O3的三角晶界结合处,界面结合紧密。  相似文献   

16.
以Mn(NO3)2、La(NO3)3.6H2O和Zn(NO3)2.6H2O为原料,通过溶胶-凝胶法制备单一钙钛矿结构La0.8Zn0.2MnO3(LZMO)。对合成后的LZMO凝胶进行自蔓延燃烧。XRD分析表明,高于873K煅烧后得到的LZMO,粉体形成了钙钛矿结构且没其他杂相。在673~973 K条件下,空气气氛中,用两端阻塞的交流阻抗方法研究了由1 073 K煅烧所得的钙钛矿材料LZMO离子导电性能,表明了该材料在中高温条件下已经具有了非常好的离子导电性能,673~973 K固体电解质的导电率为1.3×10-3~7.4×10-2Ω-1.m-1。应用Arrhenius公式对离子导电的活化能进行计算,求得离子导电活化能为70.17 kJ/mol。  相似文献   

17.
通过简单的固相法和液相法,分别制备出石墨相氮化碳(g-C_3N_4)表面改性的商品化LiCoO_2复合材料,采用扫描电子显微镜观察改性后的材料,发现g-C_3N_4都均匀地包裹在LiCoO_2表面。两种g-C_3N_4-LiCoO_2复合材料被用作锂离子电池的正极材料,电化学测试结果显示,固相法制得的g-C_3N_4-LiCoO_2复合材料在0.2C的倍率下充放电测试,首次比容量达167mA·h·g~(-1),循环80次后,比容量仍达132mA·h·g~(-1),高于未经g-C_3N_4包裹的纯LiCoO_2(98mA·h·g~(-1));液相法制得的Y-C_3N_4-LiCoO_2复合材料循环稳定性明显优于同类材料,循环80次后容量保持率均在95%以上。试验证实,g-C_3N_4表面改性的策略具有一定的实用价值,改性后,材料优异的电化学性能归因于g-C_3N_4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入/脱出电极材料时引起LiCoO_2体积的变化。  相似文献   

18.
《稀土》2016,(2)
采用溶胶-凝胶法制备了固体氧化物燃料电池(SOFCs)电解质材料Ce_(0.8)Y_(0.2-x)Sr_xO_(2-δ)(x=0.00、0.02、0.04、0.06、0.08),并通过红外光谱、热重-差示扫描量热分析、X射线衍射、扫描电镜、交流阻抗等对试样进行分析表征。结果表明,采用溶胶-凝胶法经700℃煅烧所得粉体呈现单相立方萤石结构,平均晶粒尺寸在8 nm~19 nm之间;溶胶-凝胶法制备的Ce_(0.8)Y_(0.2-x)Sr_xO_(2-δ)具有较高的烧结活性,经1400℃烧结2 h后材料的相对密度均大于98%。电化学性能研究显示,Y、Sr双掺杂能提高CeO_2基电解质的电性能,其中Ce_(0.8)Y_(0.16)Sr_(0.04)O_(1.88)在中温条件下具有良好的离子导电率、适中的电导活化能。Ce_(0.8)Y_(0.16)Sr_(0.04)O_(1.8)在800℃时的离子电导率为0.039 S/cm,电导活化能为0.86 eV。  相似文献   

19.
随着电动汽车的不断普及,锂离子电池(LIBs)的安全性备受关注。目前固态锂离子电池具有能量密度高和安全性好的优势,被认为是解决传统液态锂金属电池安全隐患和提高其循环性能的关键材料。然而,单一形式的固态电解质存在离子电导率低、界面阻抗大等问题,限制了固态锂离子电池的发展。近年来,基于无机填料与聚合物电解质的有机-无机复合电解质受到了广泛关注,有机-无机复合固态电解质兼有聚合物与无机填料的优点,一方面可以提高柔韧性,另一方面可以有效提高电池的机械性能。本文归纳总结了有机聚合物与无机金属氧化物复合固态电解质的不同类型,分析了基于不同聚合物与无机金属氧化物复合形成的有机-无机复合固态电解质对锂离子电池复合界面行为、离子电导率、电池机械性能的影响,并对复合固态电解质制备和应用过程中存在的问题和解决方法进行了梳理。最后对聚合物基复合金属氧化物固态电解质未来要重点解决的问题和发展方向进行了预测。  相似文献   

20.
谭文轶  钟秦  孙海波 《稀有金属》2006,30(6):766-769
以H2S作为燃气,采用燃料电池技术脱除H2S,并同时得到电能和其他环境友好共生副产物,这是一种理想的酸性废气资源化手段.而燃料电池电输出性能大小与固体电解质材料有关.采用尿素燃烧法制备Zr掺杂的SrCeO3钙钛矿型质子固体电解质.电解质前驱体粉末经873 K煅烧后具有典型的钙钛矿结构.在773~1273 K温度范围内,固体电解质Zr掺杂的SrCeO3具有较高的体电导率,其值在10-2S·cm-1左右.将Zr掺杂的SrCeO3电解质构成结构为MoS2-SCZY-Ag的单体SOFC,获得了开路电压值为0.70 V和最大的电功率密度1.22mW·cm-2.这将为天然气、化肥等工业产生的H2S废气提供一种可资源化利用途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号